Unusual molecule in brain and retina can trigger vision loss

NewsGuard 100/100 Score

Scientists have identified a double agent in the eye that, once triggered, can morph from neuron protector to neuron killer. The discovery has significant health implications since the neurons killed through this process results in vision loss and blindness.

The findings, published in the journal Proceedings of the National Academy of Sciences (PNAS), are collaboration between the Universit- de Montreal, McGill University and the Montreal Neurological Institute in Canada and the Universit- de Namur in Belgium. The researchers show how an unusual molecule, called proNGF, activates glial cells that normally protect neurons in the retina and brain.

"We found that glial cells attack and kill neurons after being triggered by proNGF," says coauthor Dr. Philip Barker, a neuroscientist at the Montreal Neurological Institute and a professor at the McGill Department of Neurology and Neurosurgery. "Since glial cells normally protect neurons, we were surprised to find that proNGF can convert glial cells into killers that cause neuron death in the retina."

Coauthor Dr. Adriana Di Polo, a professor at the Universit- de Montr-al Department of Pathology and Cell Biology, compares the proNGF molecule to a cell hijacker. "Before this study, we didn't know what physiological role the proNGF molecule played in the eye," she says. "We now propose that, following brain damage or neurodegenerative diseases, proNGF alters the glial cell network to change its function. Rather than protecting neurons, proNGF makes the glial cells attack neurons."

Scientists must now pay more attention to the damage proNGF can trigger. "Once retinal neurons die, they are gone forever and the permanent loss of these cells causes blindness," warns Dr. Di Polo.

"The next step for researchers is to explore whether proNGF signals can be controlled", says Fr-d-ric Lebrun-Julien, first author and a PhD student at the Universit- de Montr-al's Department of Pathology and Cell Biology.

Dr. Barker concurs. "If we can block factors induced by proNGF, we can protect neurons that would normally be lost. We think these findings may eventually translate into clinical benefits in diseases such as glaucoma."

Source: University of Montreal

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Brain dynamics and BMI linked to dieting success, study finds