Promising research on cryptosporidiosis could lead to effective treatment: Brandeis University biochemist

NewsGuard 100/100 Score

A Brandeis biochemist's pioneering research on cryptosporidium could lead to the first effective treatment

Discovered in 1976, cryptosporidium lurks worldwide in water, contaminating swimming pools, water parks, and drinking water supplies. Although it has even been featured on the comedy show The Colbert Report, it is no laughing matter-this microscopic pathogen is a leading cause of diarrhea and malnutrition and the most common source of infection in immune-weakened people such as AIDS patients. It is also a potential bioterrorism agent.

"All you need is a cow and a centrifuge to harvest enough oocysts to infect a small city," says Brandeis University biochemist Liz Hedstrom. Roughly 20 percent of calves are infected by cryptosporidium oocysts, which are found in their feces. In 1993, in the largest waterborne disease outbreak in U.S. history, this nasty protozoan parasite infiltrated Milwaukee's municipal water supply, killing more than 100 people and sickening some 400,000.

Cryptosporidium invades the small intestine, where it opens fire, typically causing severe gastrointestinal distress and even death in people with weakened immune systems. Cryptosporidium is a hardy foe whose oocysts-a spore-like phase in the parasite life cycle-remain stable outside a host for long periods and are resistant to conventional water treatment such as chlorine disinfection.

The latest research news on this waterborne foe will be the focus of Hedstrom's talk, titled "Targeting a prokaryotic protein in a eukaryotic parasite," at the American Society for Biochemistry and Molecular Biology's annual meeting. The talk will be held in the Anaheim Convention Center, Room 304C, on Sunday April 25 at 9:55 am PST. Hedstrom's promising research could lead to an effective treatment to prevent cryptosporidiosis.

Hedstrom and her collaborators made a critical breakthrough in eroding cryptosporidium defenses when they identified IMPDH, a key enzyme involved in the biosynthesis of RNA and DNA, as a potential drug target. Her research has shown that IMPDH inhibitors block the parasite from proliferating in vitro. Importantly, the Cryptosporidium IMPDH has very different properties from those of the human enzyme counterpart.

Next, Hedstrom and her colleagues identified compounds that blocked the action of the Cryptosporidium IMPDH, but spared human IMPDH. Leading a large-scale screen of a commercial library containing 129,000 compounds, Hedstrom discovered more than fifty compounds that specifically inhibit the parasite enzyme. A number of these compounds display antiparasitic activity. Hedstrom is now working on improving the compounds' potency, bioavailability and metabolic stability, a first step in the drug development process.

"It's a difficult problem, but we think that we have some very promising compounds," says Hedstrom.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research confirms no association between SARS-CoV-2 and childhood asthma diagnoses