Swedish scientists discover a new method to develop effective antimalarial drugs

NewsGuard 100/100 Score

Amodiaquine was introduced as an antimalarial drug, but was withdrawn when serious adverse effects were observed. Scientists at the University of Gothenburg, Sweden, have now developed a method that can be used to develop safer drugs.

A pharmaceutical in the body is, in the optimal case, broken down into harmless products (metabolites) that leave the body, for example via the urine. Some pharmaceuticals, however, can be converted into toxic products, which may result in serious adverse effects. A research collaboration between the University of Gothenburg and AstraZeneca has resulted in a method that can facilitate the process of developing safe drugs. 

Scientist Tove Johansson Mali'n presents in her thesis a method in which various chemical systems are used to simulate the metabolism of pharmaceuticals in the body. She has been able to use the method to identify and characterise several potentially toxic products that arise as the metabolites of drugs.

One example is the drug amodiaquine. This was introduced as an antimalarial drug, but was withdrawn from the market when it became clear that the drug caused serious adverse effects in the form of liver damage and impaired immune system. Amodiaquine today is mainly used in the acute phase of malaria, mainly in Africa, where resistance to other antimalarial drugs is widespread. Tove Johansson Mali'n has now managed to identify, with the aid of the method, previously unknown metabolites that may have caused, or contributed to, the adverse effects of amodiaquine.

Tove Johansson Mali'n describes the results in her doctoral thesis. The work has been performed in collaboration with the pharmaceuticals company AstraZeneca and is already attracting international attention. Tove Johansson Mali'n has been invited to Salt Lake City, USA at the end of May in order to present her results at an international conference arranged by the American Society for Mass Spectrometry, with 7,000 participants.

"We hope that the method can simplify the work of identifying potentially toxic metabolites at an early stage, and thus facilitate the development of safe drugs", says Tove Johansson Mali'n.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Examining how pain could play a direct protective role in the gut