Professor develops sensor to better regulate fluid flow in hydrocephalus

NewsGuard 100/100 Score

Hydrocephalus, or "water on the brain" as it is often called, is a condition that is diagnosed in tens of thousands in the U.S. every year, causing symptoms from mild gait problems to life-threatening seizures.

A surgically implanted shunt system that diverts excess cerebrospinal fluid from the brain to a part of the body where it can be absorbed -- usually the abdomen -- has long been the preferred treatment. But shunts are unreliable and often fail after implantation. The devices have remained virtually unchanged for more than a half century.

Nearly a decade ago Andreas Linninger, associate professor of bioengineering at the University of Illinois at Chicago, attended a talk by a physician who challenged scientists to think up new ways to treat hydrocephalus. Linninger took up the challenge and just received an additional $423,000 grant from the National Institute of Neurological Disorders and Stroke to begin testing in an animal model a patented volume sensor he developed to better regulate fluid flow in hydrocephalus.

"One of the biggest problems with shunts is they either drain too much -- so brain ventricles, or cavities, completely collapse -- or drain too little," Linninger said.

"Either way, it's not the best outcome for patients."

Linninger's aim is to develop a measurement that always knows accurately the ventricular size, and keeps it constant using an active feedback control mechanism.

Linninger, graduate student Sukhi Basti and undergraduate Tim Harris have used their mathematical and engineering skills to better understand flow in the brain ventricles where fluid accumulates. They developed a microelectronic sensor to accurately regulate this flow and have begun testing it on laboratory rats with hydrocephalus.

"We've done acute, or short-period, experiments to measure the volume of fluid removed over a few hours. The more important next step is assessing the animal over several weeks to see if we can properly track ventricular size after shunting," Linninger said.

Linninger ultimately hopes to combine a volume sensor with an actively controlled micro-pump to maintain optimal fluid levels. Shunts used now are passive and rely on pressure to discharge fluid. They are affected by posture, activity and even altitude, Linninger said.

Linninger's team hopes the animal tests will validate the procedure, which may lead to a start-up company and a commercial developer to create a device for use in patients.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough brain stimulator could revolutionize treatment for neurological disorders