NHGRI's new strategic plan to identify genetic bases of most single-gene disorders

Published on February 14, 2011 at 8:20 AM · No Comments

A new strategic plan from an arm of the National Institutes of Health envisions scientists being able to identify genetic bases of most single-gene disorders and gaining new insights into multi-gene disorders in the next decade. This should lead to more accurate diagnoses, new drug targets and the development of practical treatments for many who today lack therapeutic options, according to the plan from the National Human Genome Research Institute (NHGRI).

Molecular pathways that are implicated in single-gene disorders may hold important clues for the diagnosis and treatment of common disease, according to the strategic plan, Charting a Course for Genomic Medicine from Base Pairs to Bedside, in the Feb. 10 issue of the journal Nature. The new strategic plan comes on the 10th anniversary of the first analysis of the human genome sequence.

"Researchers around the world are working towards a future when health care providers will use information about our individual genomes to better diagnose and treat disease," said Eric Green, M.D., Ph.D., NHGRI director. "While significant challenges remain to our understanding of how the genome operates in health and disease, there are enough examples to say with confidence that genomics research will lead to important advances in medicine."

The new vision, produced in consultation with the research community over the past two and a half years, is framed in terms of five research domains. They span activities from basic research into how the human genome is organized and functions to clinical applications that will use knowledge of the genome and genomic technologies to improve medical care and health maintenance. The research domains are:

  • Understanding the structure of genomes

  • Understanding the biology of genomes

  • Understanding the biology of disease

  • Advancing the science of medicine

  • Improving the effectiveness of healthcare

The plan envisions continuing to expand the understanding of the biology of the genome, including creating more diverse and complete catalogs of genomic and other "-omic" information, along with new tools and technologies to develop and interrogate those catalogs. Investigators in all fields of biomedical research use these resources to identify the functional contributors within the genome that determine normal, healthy biology, as well as those that, when altered, lead to common as well as rare diseases.

The new sequencing technologies, which have been widely adopted in the past three years, are a major driver of the developments in genomics research. "It took all the sequencing capacity in the world about 13 years to produce the first human genome sequence," said co-author Mark Guyer, Ph.D., director of the NHGRI Division of Extramural Research. "In 2003, around the time we completed the Human Genome Project, technology had improved to the point where 100 machines could sequence a human-sized genome in about three months. In 2011, one machine can produce a human-sized sequence in about five days."

DNA sequencing technologies, however, are just one of the tools needed to answer the research questions that will advance human health. Technological improvements in many other areas will be critical to successfully integrate genomic knowledge into clinical care. The plan calls for fast, low-cost and highly accurate tools that will allow researchers to read and interpret much longer sections of the human genome and clinicians to use sequence information at the point of care.

The plan also calls for new technologies to measure the interaction between the environment, behavior and genes and for routine clinical applications of genomic tools such as newborn genetic screening and other types of diagnostic screening. It also calls for electronic medical records systems that integrate family histories and genomic data to generate personalized diagnoses, treatments, and prevention plans.

Development of new analytical methods, software tools and a robust computational infrastructure will be essential. Researchers need these tools for accessing, analyzing, integrating and storing the mountains of complex genomic data that will be gathered from thousands of individuals, according to the report.

With this ever-expanding body of knowledge, scientists will likely identify the genetic basis of most single-gene disorders in the next decade, the plan asserts. Furthermore, molecular pathways that are implicated in single-gene disorders may hold important clues for the diagnosis and treatment of common disease, the plan says.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post