BK channel activation involves structural rearrangements: Study

NewsGuard 100/100 Score

BK channels (large-conductance, Ca2+-dependent K+ channels) are essential for the regulation of important biological processes such as smooth muscle tone and neuronal excitability. New research shows that BK channel activation involves structural rearrangements formerly not understood. The study appears in the August 2011 issue of the Journal of General Physiology.

Previous research pointed to a possible unified theory of activation gating in K+ channels, with the "activation gate" formed by the bundle crossing of four S6 transmembrane helices from the four subunits. Recent studies, however, have suggested a different structure for BK channels, but the exact location of the activation gate remained a mystery.

A new study by Xixi Chen and Richard Aldrich (The University of Texas at Austin) provides important clues to this question. The research identifies a single residue M314, halfway down S6, that appears to change conformation during the opening of the BK channel, rotating its side chain from a position in the closed state not exposed to the hydrophilic pore to one that is so exposed in the open state. The results further show that M314 might not actually form the part of the activation gate that blocks ion passage, but that motions in the deep pore may be required for blocking ion passage elsewhere in the channel.

The findings point to new directions for research regarding the molecular mechanisms of BK channel activation, according to Commentary by Daniel Cox (Tufts University School of Medicine) and Toshinori Hoshi (University of Pennsylvania). Importantly, they say, the study demonstrates that BK channel activation is not an open-and-shut case as previously suspected.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research confirms no association between SARS-CoV-2 and childhood asthma diagnoses