Elevating free radical levels suppresses appetite in obese mice

NewsGuard 100/100 Score

Obesity is growing at alarming rates worldwide, and the biggest culprit is overeating. In a study of brain circuits that control hunger and satiety, Yale School of Medicine researchers have found that molecular mechanisms controlling free radicals-molecules tied to aging and tissue damage-are at the heart of increased appetite in diet-induced obesity.

Published Aug. 28 in the advanced online issue of Nature Medicine, the study found that elevating free radical levels in the hypothalamus directly or indirectly suppresses appetite in obese mice by activating satiety-promoting melanocortin neurons. Free radicals, however, are also thought to drive the aging process.

"It's a catch-22," said senior author Tamas Horvath, the Jean and David W. Wallace Professor of Biomedical Research, chair of comparative medicine and director of the Yale Program on Integrative Cell Signaling and Neurobiology of Metabolism. "On one hand, you must have these critical signaling molecules to stop eating. On the other hand, if exposed to them chronically, free radicals damage cells and promote aging."

"That's why, in response to continuous overeating, a cellular mechanism kicks in to suppress the generation of these free radicals," added lead author Sabrina Diano, associate professor of Ob/Gyn, neurobiology and comparative medicine. "While this free radical-suppressing mechanism-promoted by growth of intracellular organelles, called peroxisomes-protects the cells from damage, this same process will decrease the ability to feel full after eating."

After the mice ate, the team saw that the neurons responsible for stopping overeating had high levels of free radicals. This process is driven by the hormone leptin and glucose, which signal the brain to modulate food intake. When mice eat, leptin and glucose levels go up, as does free radical levels. However, in mice with diet-induced obesity, these same neurons display impaired firing and activity (leptin resistance); in these mice, levels of free radicals were buffered by peroxisomes, preventing the activation of these neurons and thus the ability to feel sated after eating.

According to Horvath and Diano, the crucial role of free radicals in promoting satiety as well as degenerative processes associated with aging may explain why it has been difficult to develop successful therapeutic strategies for obesity without major side effects. Current studies address the question of whether, under any circumstance, satiety could be promoted without sustained elevation of free radicals in the brain and periphery.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Penn State study examines how a person's telomeres are affected by caloric restriction