Study: K-complexes control effects of noise on sleep

NewsGuard 100/100 Score

During sleep, our perception of the environment decreases. However the extent to which the human brain responds to surrounding noises during sleep remains unclear. In a study published this week in Proceedings of the National Academy of Sciences (PNAS), researchers from University of Liège (Belgium) used brain imaging to study responses to sounds during sleep. They show that brain activity in the face of noise is controlled by specific brain waves during sleep. In particular, waves called sleep 'spindles' prevent the transmission of sounds to auditory brain regions. Conversely, when sounds are associated with brain waves called 'K-complexes', activation of auditory areas is larger. Our perception of the environment is therefore not continuously reduced during sleep, but rather varies throughout sleep under the influence of particular brain waves.

In this study, the research team led by Dr Thanh Dang-Vu and Prof. Pierre Maquet (Cyclotron Research Center, University of Liège) shows that brain activity induced by sounds during sleep closely depends on brain waves that constitute our sleep. 

By using functional magnetic resonance imaging (fMRI) combined with electroencephalography (EEG), researchers have evidenced that auditory brain regions remain active in response to sounds during sleep, except when sounds occur during brain waves called sleep 'spindles'. The study indeed shows that spindles prevent the transmission of sounds to the auditory cortex.

Conversely, sounds can induce the production during sleep of brain waves called 'K-complexes'. The results brought by this new study demonstrate that production of K-complexes by sounds is associated with a larger activation of auditory brain areas. While spindles prevent the transmission of sounds, K-complexes reflect a more important transmission of sounds to the sleeping brain.

The effects of noise on sleep are therefore controlled by specific brain waves. In particular, the human brain is isolated from the environment during sleep spindles, which might allow essential sleep functions to operate such as the consolidation of memory for previously acquired information. These brain waves thus play a crucial role in sleep quality and stability in the face of noise.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Hypoglossal nerve stimulation offers hope for pediatric Down syndrome patients with OSA