Researchers reveal what cells respond to anesthesia in C. elegans

NewsGuard 100/100 Score

Researchers say discovery may reveal new uses of existing medications to reverse anesthesia

Physicians use inhalation anesthetics in a way that is incredibly safe for patients, but very little is known about the intricacies of how these drugs actually work in children and adults. Now, researchers have uncovered what cells respond to anesthesia in an organism known as the C. elegans, according to a new study from the Seattle Children's Research Institute. C. elegans is a transparent roundworm used often in research. The study, "Optical reversal of halothane-induced immobility in C. elegans," is published in the December 20, 2011 issue of Current Biology.

"Our findings tell us what cells and channels are important in making the anesthetic work," said lead author Phil Morgan, MD, researcher at Seattle Children's Research Institute and University of Washington professor of anesthesiology and pain medicine. "The scientific community has attempted to uncover the secrets of how anesthetics work since the 1860s, and we now have at least part of the answer." Margaret Sedensky, MD, Seattle Children's Research Institute and a UW professor of anesthesiology and pain medicine, and Vinod Singaram, graduate student, Case Western Reserve University, are co-lead authors of the study.

The team studied the roundworm after inserting a pigment or protein typically found in the retina of a human eye - called a retinal-dependent rhodopsin channel - into its cells. The proteins in cell membranes act as channels to help movement. Researchers then used a blue light, activating channels in the roundworm that allowed the immediate reversal of anesthetics, and resulting in the roundworm waking up and seemingly swimming off the slide. A video of a roundworm reacting to the blue light, waking up from anesthesia can be found here:

"We believe that there is a class of potassium channels in humans that are crucial in this process of how anesthetics work and that they are perhaps the ones that are sensitive to potential anesthesia reversal. There are drugs for blocking these channels and with these same drugs, maybe we can eventually reverse anesthesia." Potassium channels are found in all living organisms and in most cell types, and they control a wide variety of cell functions.

Anesthesia medications are used in both children and adults, but many are used more often in kids. Dr. Morgan and his colleagues plan to replicate the study in other animal models, starting with a mouse.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rising antibiotic resistance prompts shift to ecological research strategies in infection control