Researchers identify latest gene associated with typical late-onset Lewy body Parkinson's

NewsGuard 100/100 Score

An international team led by human genetic researchers at the University of British Columbia and Vancouver Coastal Health has identified the latest gene associated with typical late-onset Lewy body Parkinson's disease (PD), with the help of a Canadian Mennonite family of Dutch-German-Russian ancestry.

Twelve of the 57 members of the Saskatchewan family who participated in the study had previously been diagnosed with PD.

UBC Medical Genetics Prof. Matthew Farrer, who led the research, notes that unequivocal confirmation of the gene's linkage with PD required DNA samples from thousands of patients with PD and healthy individuals. He refers to the new discovery as the "missing link," as it helps to unify past genetic discoveries in PD.

"A breakthrough like this would not be possible without the involvement and support of the Saskatchewan Mennonite family who gave up considerable time, contributed clinical information, donated blood samples, participated in PET imaging studies and, on more than one occasion following the death of an individual, donated brain samples," says Farrer, Canada Excellence Research Chair in Neurogenetics and Translational Neuroscience and the Dr. Donald Rix BC Leadership Chair in Genetic Medicine.

"We are forever indebted to their generosity and contribution to better understanding - and ultimately finding a cure - for this debilitating disease."

The mutation, in a gene called DNAJC13, was discovered using massively parallel DNA sequencing. Conclusive evidence came from the identification of the gene mutation in several other families across many Canadian provinces, including British Columbia.

"This discovery is not only significant for researchers, but also for those families carrying this genetic mutation and afflicted with this disease in that it offers hope that something good might yet result from their suffering," says Bruce Guenther, President of the Mennonite Brethren Biblical Seminary Canada, a community leader and spokesperson for the family that participated in the study.

"The family involved is very grateful for the research team's respectful, collaborative and sensitive approach, and we hope that this enables the discovery of more effective treatments, and hopefully eventually a cure."

The discovery resulted from a longstanding collaboration with neurology colleagues, Ali and Alex Rajput at the University of Saskatchewan and Silke Cresswell and Jon Stoessl at UBC. The research team also includes scientists from McGill University, the Mayo Clinic in Florida, and St. Olav's Hospital in Norway.

Farrer shared the discovery last week with the medical community as part of his keynote speech in Dublin today at the 16th International Congress of Parkinson's Disease and Movement Disorders (Plenary Session V: Is it time to change how we define Parkinson's disease?) Details of the study was presented at the conference and is being submitted for publication.

"The identification of DNAJC13 will certainly be of interest to people around the world who trace their family history to the nineteenth-century Mennonite colonies in Russia, and who have family members suffering from Parkinson's disease," Guenther adds.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gene defect associated with argininosuccinic aciduria corrected using CRISPR-Cas9 technique