Researchers discover gene mutations linked to spinocerebellar ataxia

Published on August 13, 2012 at 12:10 PM · No Comments

A global hunt for the cause of a crippling inherited nerve disorder has found its target. The discovery opens the door for better diagnosis and treatment of this particular disease - but also for better understanding of why nerves in the brain's movement-controlling center die, and how new DNA-mapping techniques can find the causes of other diseases that run in families.

In a new paper in the Annals of Neurology, a team from Taiwan, France and the University of Michigan Health System report that mutations in the gene KCND3 were found in six families in Asia, Europe and the United States that have been haunted by the same form of a disease called spinocerebellar ataxia or SCA. The disease causes progressive loss of balance, muscle control and ability to walk.

The new paper finds the disease gene in a region of chromosome 1 where a Dutch group had previously shown linkage with a form of SCA called SCA19, and the Taiwanese group on the new paper had shown similar linkage in a family for a form of the disease that was then called SCA22.

The Dutch group has just published results in the same issue of the journal, zeroing in on the same gene as the U-M/Taiwanese/French groups.

The gene governs the production of a protein that allows nerve cells to "talk" to one another through the flow of potassium. Pinpointing its role as a cause of ataxia will now allow more people with ataxia to learn the exact cause of their disease, give a very specific target for new treatments, and perhaps allow the families to stop the disease from affecting future generations.

But the findings also have significance beyond ataxia. The researchers also show that when KCND3 is mutated, it causes not only poor communication between nerve cells in the cerebellum - but also the death of those cells. It's information that could aid research on other neurological disorders involving balance and movement.

Margit Burmeister, Ph.D., the U-M geneticist who helped lead the work, notes that the gene could not have been found without a great deal of DNA detective work - and the cooperation of the families who volunteered to let researchers map all the DNA of multiple members of their family tree.

"We combined traditional genetic linkage analysis in families with inherited diseases with whole exome sequencing of an individual's DNA, allowing us to narrow down and ultimately identify the mutation," she says. "This new type of approach has already resulted in many new gene identifications, and will bring in many more."

U-M neurologist Vikram Shakkottai, M.D., Ph.D., an ataxia specialist and co-author on the paper, notes that the new genetic information will help patients find out the specific cause of their disease - a reassuring thing in itself.

But he and his colleagues are already working to find drugs that might alter potassium flow, and provide a treatment for a group of diseases that currently are only treated with supportive care such as physical activity and balance training as patients deteriorate.

"Many of the families who come to our clinic for treatment don't have a recognized genetic mutation, so it's important to find new genetic mutations to explain their symptoms," says Shakkottai, an assistant professor in the U-M Department of Neurology. "But at the same time, this research is helping us understand a common mechanism of nerve cell dysfunction in progressive and non-progressive disease."

Some forms of ataxia, called episodic, do not cause progressive worsening of symptoms - but past research has shown potassium and calcium channel mutations to be at the root of them, too.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment