Study uncovers new pathway that can treat depression

NewsGuard 100/100 Score

Depression takes a substantial toll on brain health. Brain imaging and post-mortem studies provide evidence that the wealth of connections in the brain are reduced in individuals with depression, with the result of impaired functional connections between key brain centers involved in mood regulation. Glial cells are one of the cell types that appear to be particularly reduced when analyzing post-mortem brain tissue from people who had depression. Glial cells support the growth and function of nerve cells and their connections.

Over the past several years, it has become increasingly recognized that antidepressants produce positive effects on brain structure that complement their effects on symptoms of depression. These structural effects of antidepressants appear to depend, in large part, on their ability to raise the levels of growth factors in the brain.

In a new study, Elsayed and colleagues from the Yale University School of Medicine report their findings on a relatively novel growth factor named fibroblast growth factor-2 or FGF2. They found that FGF2 can increase the number of glial cells and block the decrease caused by chronic stress exposure by promoting the generation of new glial cells.

Senior author Dr. Ronald Duman said, "Our study uncovers a new pathway that can be targeted for treating depression. Our research shows that we can increase the production and maintenance of glial cells that are important for supporting neurons, providing an enriched environment for proper neuronal function."

To study whether FGF2 can treat depression, the researchers used rodent models where animals are subjected to various natural stressors, which can trigger behaviors that are similar to those expressed by depressed humans, such as despair and loss of pleasure. FGF2 infusions restored the deficit in glial cell number caused by chronic stress. An underlying molecular mechanism was also identified when the data showed that antidepressants increase glial generation and function via increasing FGF2 signaling.

"Although more research is warranted to explore the contribution of glial cells to the antidepressant effects of FGF2, the results of this study present a fundamental new mechanism that merits attention in the quest to find more efficacious and faster-acting antidepressant drugs," concluded Duman.

"The deeper that science digs into the biology underlying antidepressant action, the more complex it becomes. Yet understanding this complexity increases the power of the science, suggesting reasons for the limitations of antidepressant treatment and pointing to novel approaches to the treatment of depression," commented Dr. John Krystal, Editor of Biological Psychiatry and Chairman of the Department of Psychiatry at the Yale University School of Medicine.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Depression impacts survival rates and quality of life for women with breast cancer