Researchers discover how to store diverse forms of artificial short-term memories in brain tissue

Published on September 11, 2012 at 12:26 AM · No Comments

Ben W. Strowbridge, PhD, Professor of Neurosciences and Physiology/Biophysics, and Robert A. Hyde, a fourth year MD/PhD student in the neurosciences graduate program at Case Western Reserve University School of Medicine, have discovered how to store diverse forms of artificial short-term memories in isolated brain tissue.

"This is the first time anyone has found a way to store information over seconds about both temporal sequences and stimulus patterns directly in brain tissue," says Dr. Strowbridge. "This paves the way for future research to identify the specific brain circuits that allow us to form short-term memories."

Their study, entitled "Mnemonic Representations of Transient Stimuli and Temporal Sequences in Rodent Hippocampus In Vitro," is slated for publication in the October issue of Nature Neuroscience, and is currently available online.

Memories are often grouped into two categories: declarative memory, the short and long-term storage of facts like names, places and events; and implicit memory, the type of memory used to learn a skill like playing the piano.

In their study, the researchers sought to better understand the mechanisms underlying short-term declarative memories such as remembering a phone number or email address someone has just shared.

Using isolated pieces of rodent brain tissue, the researchers demonstrated that they could form a memory of which one of four input pathways was activated. The neural circuits contained within small isolated sections of the brain region called the hippocampus maintained the memory of stimulated input for more than 10 seconds. The information about which pathway was stimulated was evident by the changes in the ongoing activity of brain cells.

"The type of activity we triggered in isolated brain sections was similar to what other researchers have demonstrated in monkeys taught to perform short-term memory tasks," according to Mr. Hyde. "Both types of memory-related activity changes typically lasted for 5-10 seconds."

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post