Researchers identify keys and doors of Anaplasmataceae tick-borne bacterium

Published on October 15, 2012 at 2:50 AM · No Comments

Virginia Commonwealth University School of Medicine researchers have identified the "keys" and "doors" of a bacterium responsible for a series of tick-transmitted diseases. These findings may point researchers toward the development of a single vaccine that protects against members of an entire family of bacteria that cause disease in humans, domestic animals and livestock.

Survival for many bacteria is dependent on their ability to invade human or animal cells. And it needs to be done in a very precise fashion. Bacteria use a specific set of "keys" on their surfaces to unlock specific "doors," or entryways into their host cells.

By understanding how these bacteria invade cells, researchers are able to identify potential targets to block the spread of infection, and from there, develop safe and effective vaccines.

In the study, now published online and appearing in the November (Volume 80, Issue 11) issue of the journal Infection and Immunity, a journal of the American Society for Microbiology, researchers reported that a protein called OmpA on the surface of Anaplasma phagocytophilum is important for invading host cells. Anaplasma phagocytophilum is an Anaplasmataceae bacterium that infects humans to cause granulocytic anaplasmosis. It is the second most common tick-transmitted disease after Lyme disease in the United States, and it also is found in Europe and Asia.

The team also identified the particular sugar residue on the surfaces of host cells to which OmpA binds.

"In other words, we identified both a key and door that together promote Anaplasma phagocytophilum infection," said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunology in the VCU School of Medicine.

"These findings are important because our data also establish a direction for development of a single vaccine that protects against members of an entire family of bacteria that cause disease in humans, domestic animals and livestock," he said.

According to Carlyon, the region of OmpA that mediates infection is shared among other Anaplasmataceae bacteria.

Experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens in the past several years. Many tick-transmitted bacterial pathogens are considered "emerging pathogens" because it was only recently discovered that they infect humans. Moreover, evidence suggests that many of these infections go unrecognized, signifying that the prevalence of human diseases caused by Anaplasmataceae pathogens is even higher, said Carlyon. Livestock infections carry a significant economic burden, costing the U.S. cattle industry $100 million per year, he added.

Researchers in Carlyon's lab are presently refining their understanding of how OmpA promotes infection and testing its efficacy in protecting against infection by A. phagocytophilum and other Anaplasmataceae members.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
New research unit to uncover multi-drug resistant bacteria in hospitals