Oxidative stress occurs in genetic models of alpha-1-antitrypsin deficiency

NewsGuard 100/100 Score

A team of researchers under the direction of Dr. Jeffrey Teckman in the Department of Pediatrics at St. Louis University, have demonstrated that oxidative stress occurs in a genetic model of alpha-1-antitrypsin deficiency. This is the most common genetic liver disorder in children and can lead to cirrhosis and hepatocellular carcinoma in adults. Some cases may require liver transplantation. The report, published in the October 2012 issue of Experimental Biology and Medicine, suggests that treatment with antioxidants might be of therapeutic benefit for some individuals.

"We have evidence of oxidative stress in livers from an animal model that expresses the classical Z variant form of alpha-1-antitrypsin. The animal model recapitulates the human liver disease, in which the livers accumulate polymers of alpha-1-antitrypsin mutant Z protein, developing fibrosis and hepatocellular carcinoma with age", says Dr. Marcus. Potentially, non-invasive treatment involving long-term regulation of antioxidant levels could ameliorate the oxidative stress and retard the advancement of disease.

"This is an exciting new report which may help us understand the extreme variability between different patients with this same, single gene, metabolic liver disease. These findings may inform the pathophysiology of other liver diseases as well", says Dr. Teckman. In clinical studies, liver disease from alpha-1-antitrypsin mutant Z protein has shown considerable variability in severity and progression, suggesting that as yet undescribed genetic modifiers may influence disease development. Based on this study, certain antioxidant enzymes involved in oxidative stress defense could be useful targets for further examination. Using microarray technology, the investigators have identified a number of potential alterations in gene expression pathways that could modify the development of liver pathologies. This information could be useful in defining genetic variants that may influence individual susceptibility and in facilitating the design of appropriate treatments.

Steven R. Goodman, PhD, Editor-in-Chief of Experimental Biology and Medicine said, "Teckman and colleagues have demonstrated that oxidative stress occurs in an animal model of Alpha-1-antitrypsin deficiency. This suggests that antioxidant treatment may be beneficial in this most common genetic liver disorder in children."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New genetic insights: Sugary beverages linked to higher risk of atrial fibrillation