Carbon nanotubes can help regulate chloride levels in nerve cells that contribute to neural injuries

Published on December 11, 2012 at 6:42 AM · No Comments

A nanomaterial engineered by researchers at Duke can help regulate chloride levels in nerve cells that contribute to chronic pain, epilepsy, and traumatic brain injury.

The findings, published online Dec. 10, 2012, in the journal Small, were demonstrated in individual nerve cells as well as in the brains of mice and rats, and may have future applications in intracranial or spinal devices to help treat neural injuries.

Carbon nanotubes are a nanomaterial with unique features, including mechanical strength and electrical conductivity. These characteristics, along with their tiny size, make them appealing to researchers in technology and medicine alike.

In a world of shrinking computers and smartphones, carbon nanotubes have been tapped as a solution for improving microchips. They outpace silicon microchips in size and performance, meeting a demand for smaller, faster devices. For people with nerve injury and certain neurological disorders, devices coated with or entirely made of carbon nanotubes could offer a new avenue for improving treatment options.

"Carbon nanotubes hold great promise for an array of applications, and we are only beginning to see their enormous potential," said lead author Wolfgang Liedtke, M.D., PhD, associate professor of medicine and neurobiology at Duke. "Their exceptional mechanical and electrical properties make them ideal for developing devices that interface with nervous tissues. However, the precise mechanisms behind carbon nanotubes and their effect on neurons remain elusive."

Not all carbon nanotubes are the same. Jie Liu, PhD, George Barth Geller Professor of Chemistry at Duke University and senior author of the study, developed specific carbon nanotubes that are extraordinarily pure. Termed few-walled carbon nanotubes, they have superior properties to their commercially-available counterparts.

Duke researchers initially set out to gauge if carbon nanotubes had toxic or adverse effects on living tissue. Studying neurons cultured from rodents, representing a "cerebral cortex in a dish," they found the opposite. Exposing the cells to carbon nanotubes appeared to have a nourishing effect on the neurons, making them bigger and stronger.

"Previous studies have looked at the behavior of carbon nanotubes on neurons. However, the impurity in the nanotubes significantly affected the results. After we developed pure few-walled carbon nanotubes in our lab, we discovered that nanotubes actually accelerated the growth of the neuronal cells significantly," said Liu.

Neural circuits can be corrupted by elevated chloride within neurons. A number of diseases involve such neural circuit damage, including chronic pain, epilepsy, and traumatic brain injury.

Low levels of chloride within neurons are maintained by a chloride transporter protein called KCC2, which functions by churning chloride ions out of the cell. In mature neurons, there is no back-up for this function.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post