Study reveals how BRCA1 enzymatic activity may stop cancer cell growth

Published on December 17, 2012 at 7:47 AM · No Comments

A new study by Georgetown University Medical Center researchers reveals how a well-known tumor suppressor gene may be functioning to stop cancer cell growth.

The findings, published online today in Oncogene, focus on the gene BRCA1, which is mutated in a majority of families who have hereditary breast and/or ovarian cancers, according to senior author Ronit I. Yarden, PhD, assistant professor in the Department of Human Science at the School of Nursing & Health Studies.

"There is a debate in the scientific community about whether BRCA1 enzymatic activity is important in tumor suppressor function," Yarden said. "My lab thinks it is."

Previous research by other investigators, according to Yarden, has shown that BRCA1 is an ubiquitin E3 ligase enzyme. When added to other proteins, ubiquitin has the ability to mark them for degradation and recycling.

Her laboratory worked to discover which proteins BRCA1 is targeting with ubiquitin and how that activity might help attenuate cell division in response to DNA damage - a function that is important for maintaining genomic integrity and suppressing tumor growth.

"Cells have surveillance mechanisms and check points that govern cell division," she said. "In order to conduct DNA repair in a timely fashion, a cell must be stopped for awhile and then repaired. Once DNA is fixed, division can then begin again."

Yarden's lab discovered that BRCA1 targets two specific proteins cyclin B and Cdc25c, which are the "keeper genes" that regulate the G2/M checkpoint - the last checkpoint a cell has to go through before it divides.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post