Study identifies mechanisms responsible for regenerating blood vessels in the brain

Published on December 20, 2012 at 11:38 PM · No Comments

New research from the University of Georgia identifies the mechanisms responsible for regenerating blood vessels in the brain.

Looking for ways to improve outcomes for stroke patients, researchers led by the UGA College of Pharmacy assistant dean for clinical programs Susan Fagan used candesartan, a commonly prescribed medication for lowering blood pressure, to identify specific growth factors in the brain responsible for recovery after a stroke.

The results were published online Dec. 4 in the Journal of Pharmacology and Experimental Therapeutics.

Although candesartan has been shown to protect the brain after a stroke, its use is generally avoided because lowering a person's blood pressure quickly after a stroke can cause problems-like decreasing much-needed oxygen to the brain-during the critical period of time following a stroke.

"The really unique thing we found is that candesartan can increase the secretion of brain derived neurotrophic factor, and the effect is separate from the blood pressure lowering effect," said study coauthor Ahmed Alhusban, who is a doctoral candidate in the College of Pharmacy. "This will support a new area for treatments of stroke and other brain injury."

Alhusban and Fagan worked with Anna Kozak, a research scientist in the college, and Adviye Ergul, a professor and director of the physiology graduate program at Georgia Health Sciences University. They are the first to show that the positive effects of candesartan on brain blood vessel growth are caused by brain derived neurotrophic factor, or BDNF.

The research shows that when candesartan blocks the angiotensin II type 1 receptor, which lowers blood pressure, it stimulates the AT2 receptor and increases the secretion of BDNF, which encourages brain repair through the growth of new blood vessels.

"BDNF is a key player in learning and memory," said Fagan, the Albert W. Jowdy Professor. "A reduction of BDNF in the brain has been associated with Alzheimer's disease and depression, so increasing this growth factor with a common medication is exciting."

AT2 is a brain receptor responsible for angiogenesis, or the growth of new blood vessels from pre-existing vessels. Angiogenesis is a normal and vital process in human growth and development-as well as in healing.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post