Researchers report novel charge zipper principle used by proteins to form functional units

Published on January 19, 2013 at 6:18 AM · No Comments

Membrane proteins are the "molecular machines" in biological cell envelopes. They control diverse processes, such as the transport of molecules across the lipid membrane, signal transduction, and photosynthesis. Their shape, i.e. folding of the molecules, plays a decisive role in the formation of, e.g., pores in the cell membrane. In the Cell magazine, researchers of Karlsruhe Institute of Technology and the University of Cagliari are now reporting a novel charge zipper principle used by proteins to form functional units (DOI: 10.1016/j.cell.2012.12.017).

"It is fascinating to see the elegant basic principles that are used by nature to construct molecular assemblies," explains Anne Ulrich, Director of the KIT Institute for Biological Interfaces. "A charge zipper between the charged side chains is an entirely unexpected mechanism used by membrane proteins to neutralize their charges such that they can be immersed into hydrophobic cell membranes."

In the study published now, Ulrich and her team investigate the so-called Twin-arginine translocase (Tat) that is used in the cell membrane of bacteria as an export machinery for folded proteins. Several TatA subunits assemble as a pore that can adapt its diameter to the size of the cargo to be transported. "But how can such a pore be built up from TatA proteins? How can they reversibly form a huge hole in the membrane for a variety of molecules to pass through, but without causing leakage of the cell?", Ulrich formulates the questions studied.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post