Neuronal reprogramming may help treat neurodegenerative diseases

Published on January 22, 2013 at 1:32 AM · No Comments

A new finding by Harvard stem cell biologists turns one of the basics of neurobiology on its head - demonstrating that it is possible to turn one type of already differentiated neuron into another within the brain.

The discovery by Paola Arlotta and Caroline Rouaux "tells you that maybe the brain is not as immutable as we always thought, because at least during an early window of time one can reprogram the identity of one neuronal class into another," said Arlotta, an Associate Professor in Harvard's Department of Stem Cell and Regenerative Biology (SCRB).

The principle of direct lineage reprogramming of differentiated cells within the body was first proven by SCRB co-chair and Harvard Stem Cell Institute (HSCI) co-director Doug Melton and colleagues five years ago, when they reprogrammed exocrine pancreatic cells directly into insulin producing beta cells.

Arlotta and Rouaux now have proven that neurons too can change their mind. The work is being published on-line today (Jan. 20) by the journal Nature Cell Biology.

In their experiments, Arlotta targeted callosal projection neurons, which connect the two hemispheres of the brain, and turned them into neurons similar to corticospinal motor neurons, one of two populations of neurons destroyed in Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease. To achieve such reprogramming of neuronal identity, the researchers used a transcription factor called Fezf2, which long as been known for playing a central role in the development of corticospinal neurons in the embryo.

What makes the finding even more significant is that the work was done in the brains of living mice, rather than in collections of cells in laboratory dishes. The mice were young, so researchers still do not know if neuronal reprogramming will be possible in older laboratory animals - and humans. If it is possible, this has enormous implications for the treatment of neurodegenerative diseases.

"Neurodegenerative diseases typically effect a specific population of neurons, leaving many others untouched. For example, in ALS it is corticospinal motor neurons in the brain and motor neurons in the spinal cord, among the many neurons of the nervous system, that selectively die," Arlotta said. "What if one could take neurons that are spared in a given disease and turn them directly into the neurons that die off? In ALS, if you could generate even a small percentage of corticospinal motor neurons, it would likely be sufficient to recover basic functioning," she said.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post