LOX enzyme can create scarred microenvironment that enhances cancer spreading

Published on January 28, 2013 at 3:59 AM · No Comments

What to fear most if faced by a cancer diagnosis is the spread of the cancer to other parts of the body. This process called metastasis accounts for over 90% of cancer patient deaths and therefore is a strong focus for cancer researchers. Researchers at BRIC, University of Copenhagen have shown that the enzyme Lysyl Oxidase (LOX) can create a "scarred" microenvironment that enhances cancer spreading. By blocking activity of the LOX enzyme, the researchers succeeded in significantly decreasing metastasis in a model of breast cancer.

'When we inhibit the activity of LOX in our cancer models, we show a dramatic reduction in metastasis. This suggests that therapeutic targeting of LOX can keep the tumour microenvironment "healthy" and thereby decrease metastasis, says Associate Professor Janine Erler from BRIC, who has headed the research.

Metastasis of breast cancer cells in the lung

In humans, LOX is an enzyme that is produced in response to tissue injury or chronic inflammation in our organs. It reacts to damage signals and "glues" collagen molecules together to form the scar-like structure. The result can be a fibrotic environment. The new findings from Janine Erler's research group show that persistent injury to lung and liver results in a fibrotic microenvironment that supports the growth of new tumours, and thereby enhances metastasis of breast cancer cells to these organs. Blocking LOX prevents the formation of this fibrotic microenvironment, thereby preventing enhanced metastasis to these organs.

'It is well-known that signals from fibrotic tissues can enhance tumour progression and metastasis, but the underlying mechanisms have remained unclear - Our new results provide insight into the link between fibrosis and cancer progression. Such a biological understanding is crucial if we are to develop effective therapies preventing tumour metastasis, says PostDoc Thomas Cox from Janine Erler's laboratory, who undertook the experimental investigation.

Development of new anti-fibrotic therapies

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post