HDAC10 gene plays a key role in autophagy and resistance to chemotherapy in high-risk neuroblastomas

NewsGuard 100/100 Score

Neuroblastomas are pediatric tumors that originate from cells of the embryonic nervous system. The disease can take widely varying clinical courses that range from spontaneous regression to fatal outcomes. Highly aggressive neuroblastomas rarely respond well to chemotherapy. Understanding and overcoming the resistance mechanisms of highly aggressive neuroblastomas are considered essential to the development of effective treatments.

Scientists from the department headed by Professor Dr. Olaf Witt at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and at Heidelberg University Hospital are searching for more effective methods to treat neuroblastomas. The researchers are particularly focusing on the role of 18 different HDAC enzymes which appear to promote the aggressiveness of neuroblastomas in various ways. Dr. Ina Oehme and her colleagues from Witt's department have now studied whether a member of the HDAC family might be linked to the sensitivity of tumors to chemotherapy in high-risk neuroblastomas. She discovered that the high-risk tumors that responded well to therapy were those which had produced only small quantities of HDAC10 prior to treatment.

The Heidelberg researchers subsequently used an experimental agent or a method of blocking the gene to turn off HDAC10 experimentally in cell cultures developed from highly aggressive neuroblastomas. They subsequently treated the cells with the chemotherapy agent doxorubicin. In neuroblastoma cells, this treatment normally induces a self-digestion process known as autophagy, a kind of recycling of endogenous cellular components. This is a biologically ancient program for survival that protects cells during starvation. Highly aggressive cancer cells use autophagy to overcome stress caused by cytotoxic agents.

However, in neuroblastoma cells without a functioning form of HDAC10, treatment disrupted the multi-stage process of autophagy of cellular components at a specific point. As expected, these cells were once again rendered sensitive to the anticancer drug. The researchers cross-checked their results by boosting the activity of the HDAC10 gene in neuroblastoma cells. This protected the cells from the consequences of subsequent chemotherapy.

"HDAC10 appears to play a key role in autophagy and resistance to chemotherapy in high-risk neuroblastomas," Olaf Witt summarizes. "In advanced tumors, high levels of HDAC10 may serve as a biomarker for resistance. A drug that specifically turns off HDAC10 might give us a more effective method of treating neuroblastomas that respond very poorly to chemotherapy."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Combined chemohormonal therapy for locally advanced prostate cancer offers extended control of PSA levels