Researchers complete genomic analysis of cervical cancer in two patient populations

Published on December 25, 2013 at 11:13 PM · No Comments

Researchers from the Boston area, Mexico, and Norway have completed a comprehensive genomic analysis of cervical cancer in two patient populations. The study identified recurrent genetic mutations not previously found in cervical cancer, including at least one for which targeted treatments have been approved for other forms of cancer. The findings also shed light on the role human papillomavirus (HPV) plays in the development of cervical cancer.

The study, which appears online in Nature, addresses a public health concern of global significance: cervical cancer is the second most common cancer in women and is responsible for approximately 10 percent of cancer deaths in women - particularly in developing countries where screening methods are not readily accessible. Almost all cases of the disease are caused by exposure to HPV and it is expected that vaccination efforts targeting HPV will decrease cervical cancer cases over time. In the meantime, however, the disease remains a significant threat to women's health.

"Cancer is a disease that affects the whole world, and one question that always arises is: is a given cancer type similar or different across populations?" explained Matthew Meyerson, one of the paper's co-senior authors. Meyerson is a professor of pathology and medical oncology at Dana-Farber Cancer Institute and a senior associate member of the Broad Institute. "While we don't have the complete answer yet in this case, what we are seeing is that, in two different populations, the causes of cervical cancer are similar and, fundamentally in both cases, it comes down to HPV-genome interaction."

To investigate the genomic underpinnings of the disease, the team performed whole exome sequencing, which examines the genetic code in the protein-coding regions of the genome, on samples from 115 cervical cancer patients from Norway and Mexico. In some cases, the researchers also conducted whole genome sequencing (analyzing the genetic code across the entire genome) or transcriptome sequencing (focusing on gene expression). In each case, the researchers compared genomic data derived from cervical cancer tumors with genomic data from healthy tissue from the same individual to determine what may have gone wrong - or mutated - in the genome to allow the cancer to develop. The mutations identified in tumors but not in healthy tissues from the same individuals are referred to as somatic mutations.

The study benefited from the international collaboration of scientists from research institutes across the globe and was made possible by SIGMA - the Slim Initiative for Genomic Medicine in the Americas - which promotes the study of genomic medicine in the service of global health.

"Low and middle-income countries suffer the largest burden of cancer in the world," said co-author Jorge Melendez, of the National Institute of Genomic Medicine in Mexico City. "Nevertheless, only 5 percent of all the global resources dedicated to this group of diseases are allocated to them. Initiatives that promote joint efforts with developing countries will help to advance not only the knowledge of the shared and distinct biological aspects of cancer diseases, but also highlight local action items to impact public health."

The cooperation of teams from the U.S., Mexico, and Norway was essential in order to sequence samples from a diverse pool of cervical cancer patients.

"Without this sort of international collaboration, the genomic view of a disease can be limited. By analyzing genomic data from diverse populations, we can discover patterns to disease progression in context of the full range of human genetic variation," said co-senior author Helga Salvesen. Salvesen, a professor of clinical medicine at University of Bergen, Norway, was a visiting scientist at the Broad Institute when the study was conducted.

The study identified 13 mutations that occurred frequently enough across the samples to be considered significant in cervical cancer. Eight of these mutations had not been linked to the disease previously, and two had not previously been seen in any cancer type.

Among the most notable findings were somatic point mutations in the gene ERBB2, which was found in a small but significant subset of the tumors. Mutations in this gene, which is also known as Her-2, had not been previously been linked to cervical cancer, but it is a known oncogene common in breast cancer. Treatments exist that target the gene.

"This suggests that a subset of cervical cancer patients could be candidates for clinical trials involving ERBB2 inhibitors, which are available and FDA-approved," explained Akinyemi Ojesina, a postdoctoral fellow in Matthew Meyerson's lab at the Broad Institute and Dana-Farber. Ojesina served as a co-first author of the paper along with Lee Lichtenstein of the Broad's Cancer Genome Analysis Group. "It is an exciting finding that could be translatable to the clinic."

The team also identified a novel mutation in the gene MAPK1. MAPK1 is one of the final steps in the MAP kinase signaling pathway - a network of interconnected genes that play a role in cell growth regulation. Mutations in other genes in the pathway have been known to drive cancer, but this is the first time that MAPK1 itself has been found to be mutated. The finding opens up the possibility that MAPK1, like other genes in the MAP kinase signaling pathway, may be a viable therapeutic target.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post