Continuing spinal cord stimulation improves symptoms of Parkinson's disease

Published on January 24, 2014 at 3:31 AM · No Comments

Researchers at Duke Medicine have shown that continuing spinal cord stimulation appears to produce improvements in symptoms of Parkinson's disease, and may protect critical neurons from injury or deterioration.

The study, performed in rats, is published online Jan. 23, 2014, in the journal Scientific Reports. It builds on earlier findings from the Duke team that stimulating the spinal cord with electrical signals temporarily eased symptoms of the neurological disorder in rodents.

"Finding novel treatments that address both the symptoms and progressive nature of Parkinson's disease is a major priority," said the study's senior author Miguel Nicolelis, M.D., Ph.D., professor of neurobiology at Duke University School of Medicine. "We need options that are safe, affordable, effective and can last a long time. Spinal cord stimulation has the potential to do this for people with Parkinson's disease."

Parkinson's disease is caused by the progressive loss of neurons that produce dopamine, an essential molecule in the brain, and affects movement, muscle control and balance.

L-dopa, the standard drug treatment for Parkinson's disease, works by replacing dopamine. While L-dopa helps many people, it can cause side effects and lose its effectiveness over time. Deep brain stimulation, which emits electrical signals from an implant in the brain, has emerged as another valuable therapy, but less than 5 percent of those with Parkinson's disease qualify for this treatment.

"Even though deep brain stimulation can be very successful, the number of patients who can take advantage of this therapy is small, in part because of the invasiveness of the procedure," Nicolelis said.

In 2009, Nicolelis and his colleagues reported in the journal Science that they developed a device for rodents that sends electrical stimulation to the dorsal column, a main sensory pathway in the spinal cord carrying information from the body to the brain. The device was attached to the surface of the spinal cord in rodents with depleted levels of dopamine, mimicking the biologic characteristics of someone with Parkinson's disease. When the stimulation was turned on, the animals' slow, stiff movements were replaced with the active behaviors of healthy mice and rats.

Because research on spinal cord stimulation in animals has been limited to the stimulation's acute effects, in the current study, Nicolelis and his colleagues investigated the long-term effects of the treatment in rats with the Parkinson's-like disease.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post