Sex cell determination requires maintenance throughout life

NewsGuard 100/100 Score

The way in which the sex of an organism is determined may require lifelong maintenance, finds new research from the University of Minnesota. According to the study published today in the journal Developmental Cell, sex-specific transcription factors perform lifelong work to maintain sexual determination and protect against reprogramming of cells from one sex to the other.

Previous research at the University of Minnesota's Department of Genetics, Cell Biology, and Development showed sex determination is not permanent. Using a mouse model, researchers found the sex of gonadal cells - those found in the ovaries or testes - require maintenance throughout life. This research also showed loss of a single transcription factor can result in the transformation of male cells into female cells.

"DMRT1 in the testis and FOXL2 in the ovary have been identified as key transcription factors responsible for maintaining sexual differentiation. What we asked in this study was how the cells maintain sexual differentiation and why their sex determination requires continuous protection," said David Zarkower, Ph.D., principal author and director of the Developmental Biology Center at the University of Minnesota.

Zarkower's research team took a closer look at DMRT1 and determined it partners with the male fetal sex determination gene called Sox9 to maintain male sexual determination after birth in a mouse model. Part of that work includes silencing genes normally involved in the female fetal sex determination process. This discovery indicates lifelong sex determination maintenance requires a process related to prenatal sex determination.

Another notable discovery is DMRT1's ability to limit retinoic acid (RA) signaling, preventing RA from activating genes normally involved in female sex determination and female organ development.

"While RA signaling between cells is absolutely required for sperm production and male fertility, we found that RA also has a dark side. If DMRT1 is not there to act as a guardian of maleness, RA has the potential to activate genes driving male-to-female transdifferentiation," said Zarkower. "This shows cell signaling can transform the identities of the very cells that use it from male to female. We think other cell types may also require similar mechanisms allowing them to use critical signaling molecules without becoming reprogrammed."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Yokogawa helps to revolutionize the field of single-cell lipidomics