Scientists find unexpected degree of complexity in transcriptional enhancers’ interactions

NewsGuard 100/100 Score

Contrary to what was thought, sequences of DNA called enhancers - which control a gene's output - find their targets long before they are activated during embryonic development, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. Their study, published online today in Nature, also reveals that, surprisingly, the degree of complexity of enhancers' interactions in the 'simple' fruit fly Drosophila is comparable to what is seen in vertebrates.

"As an embryo develops, there are huge changes in transcription, much of which drives developmental progression: genes are changing from on to off, and off to on - but the contacts between enhancers and their target genes remain largely unchanged," says Eileen Furlong from EMBL, who led the work. "Enhancers regulate transcription, so it was really surprising that there are few changes in their interactions at a time when transcription is changing."

To activate a gene, an enhancer has to come into contact with the portion of DNA at the start of the gene - its promoter. For enhancers that are located far away from their targets, the cell achieves this by looping the DNA around to bring about that contact. Yad Ghavi-Helm, a postdoctoral fellow in Furlong's lab, found that, in developing fruit fly embryos, these DNA loops are formed, contact is established, and the cell's gene-reading machinery is recruited, hours before the gene is expressed. The results indicate that the whole system is primed in advance, ready to spring to action when needed.

When they looked at all the enhancers that are known in Drosophila and mapped what genes they establish contacts with, the EMBL scientists discovered that these genetic regulators act across long distances in the genome, and in complex ways. Such a prevalence of long-distance action and such complex interactions were previously known to be widespread among vertebrates, but these findings show that they evolved much earlier.

For Furlong, Ghavi-Helm and colleagues, the study opens up a plethora of further questions: At what point in an embryo's life do enhancer loops form? And how long after a gene has been switched off do the loops remain? If loop formation isn't the trigger for gene activation, what is? What's the exact role of the contacts they have found? And finally, a technically challenging question: unravelling if all an enhancer's interactions are happening at the same time in the same cell. The study was performed in collaboration with Wolfgang Huber's lab at EMBL, which assisted with the raw data processing and normalisation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of new vascular cell type may pave way for novel strategies to treat cardiovascular diseases