Study on kidney cancer can help pave way toward more effective personalized medicine

NewsGuard 100/100 Score

Understanding the complexity of cancer is a major goal of the scientific community, and for kidney cancer researchers this goal just got closer. Dr. Chad Creighton, associate professor of medicine and member of the Dan L Duncan Comprehensive Cancer Center Division of Biostatistics at Baylor College of Medicine, led the study that analyzed close to 900 kidney cancers at the molecular level. The team discovered that what have historically been considered three major types of kidney cancer according to their characteristics under the microscope, could be further distinguished into nine major subtypes through molecular analyses. Each subtype was unique in terms of altered molecular pathways and patient survival. This study made use of data from The Cancer Genome Atlas.

Creighton and colleagues' findings are important because they help pave the way toward more effective personalized medicine. Each kidney cancer has unique characteristics. As a result, different cancers may respond differently to the same treatment. Understanding what makes each kidney cancer unique can provide clues to finding targets for effective therapies. The nine subtypes discovered by Creighton and colleagues were found to have therapeutic implications.

"Different types of cancer can show different pathways being dysregulated," said Creighton. "And for some of the pathways we have therapies we can use to target them."

In particular, the researchers found that a pathway called immune checkpoint was most active in a subtype of clear cell kidney cancer that is typically very aggressive. The immune checkpoint pathway can potentially be a target for specific therapies.

"Not all patients have this pathway activated but molecular analysis would allow us to identify those patients that represent the best candidates for receiving therapies that target that pathway specifically," Creighton said. "If we have this information, then we may have an idea of what would work better for the patient. The molecular information can potentially help guide better decisions for treating each patient."

For Creighton, this work also highlights a rich data resource that he and others expect will be used extensively by investigators in the field to continue advancing their studies of kidney cancer. "Much is going to be learned about kidney cancer with researchers using these data to answer new questions about the disease," Creighton said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trials show promise for immune checkpoint blockers in early-stage lung cancer