Role of microRNAs in range of physiological activities

NewsGuard 100/100 Score

A group including scientists from the Florida campus of The Scripps Research Institute (TSRI) has been awarded a grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health to study the role of microRNAs in a range of physiological activities, including memory, sleep, synapse function and movement.

Ron Davis, chair of TSRI's Department of Neuroscience, will be a principal investigator of the new five-year study with David Van Vactor of Harvard University, Leslie Griffith of Brandeis University and Dennis Wall of Stanford University.

"This new collaboration with some of the best scientists at some of the best universities in the world has the potential to bring us a wealth of new and potentially groundbreaking knowledge about microRNAs," Davis said. "Because microRNAs are so critical for normal development and physiology, they are a potentially rich source of therapeutic targets. Our new collaboration will help us exploit that potential."

Scripps Florida will receive approximately $2 million for the project over the next five years.

MicroRNAs, as their name suggests, are tiny bits of genetic material. Instead of being translated into proteins like many RNAs, microRNAs act to regulate gene expression -- acting like a dimmer switch on a light.

In humans there are almost 2,000 distinct microRNAs, which collectively regulate somewhere between 30 and 80 percent of human genes.

Despite their ubiquity, their importance has become evident only in the last decade or so, and details are still emerging. Davis noted a host of critical questions remain: How complex is the microRNA regulatory landscape for neural circuits mediating essential behaviors? To what extent are microRNA mechanisms used in the brain? Do they regulate distinct sets of target genes in different cell types and/or developmental stages?

The new collaborative study will use Drosophila, the common fruit fly, which is a widely recognized substitute for human memory studies, to help answer some of these questions.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Experts develop blood test that can accurately detect sleep deprivation