ZMYND8 protein can suppress metastasis-linked genes in prostate cancer

NewsGuard 100/100 Score

Although it reads like European license plate number, a protein known as ZMYND8 has demonstrated its ability to block metastasis-linked genes in prostate cancer, according to a study at The University of Texas MD Anderson Cancer Center. The findings, resulting from cell line and mouse model studies, are published in the July 28 online issue of Molecular Cell.

"These findings are important as cancer metastasis is a complicated process and is both devastating and clinically challenging," said Min Gyu Lee, Ph.D., associate professor of Molecular and Cellular Oncology. "For metastasis, cancer cells acquire migratory and invasive abilities and so gaining new insight into how this occurs and how to stop metastasis is crucial. We believe this study opens a window into this process."

Lee's study centered on modification of proteins crucial to gene regulation, known as histones. Alterations in histone modifications, including acetylation and methylation, are frequently associated with cancer development. Lee's group looked at ZMYND8 as a histone "reader" that could possibly impact gene expression by recognizing these histone modifications known as histone "marks."

"It has been well documented that the effects of histone acetylation and methylation on gene expression can be mediated by specific binding proteins called 'readers,'" said Lee. "We identified ZMYND8 as a reader for histone marks called H3K4me1 and H3K14ac, both of which are tied to metastasis-linked genes."

The research group also noted that ZMYND8 cooperated with a type of histone mark "eraser" called JARID1D to suppress metastasis-linked genes.

"These findings are of special interest in light of our earlier study that JARID1D levels are lower in metastasized prostate tumors than in normal prostate and primary prostate tumors," said Lee. "This study revealed a previously unknown metastasis-suppressive mechanism in which ZMYND8 counteracts the expression of metastasis-linked genes by reading dual histone marks H3K4me1 and H3K14ac and cooperating with JARID1D."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trials show promise for immune checkpoint blockers in early-stage lung cancer