Mesoporous material can inhibit growth of bacteria linked to acne and hospital acquired infections

NewsGuard 100/100 Score

The mesoporous material Upsalite® is shown to inhibit growth of bacteria associated with acne and hospital acquired infections. In a study published in ACS Omega, researchers at Uppsala University have shown that the mesoporous magnesium carbonate Upsalite® exerts strong bacteriostatic effect on Staphylococcus epidermidis.

Staphylococcus epidermidisis an opportunistic bacterium that that has received the most attention for causing hospital acquired infections (HAIs), and can readily become resistant to antibiotics. It is also associated with acne as well as infections of intravascular devices and complications in patients with implanted prosthetic material. The results open up for development of materials inhibiting bacterial growth without the use of antibiotics for e.g. dermal applications.

Porous materials are abundant in nature; wood, rocks and cancellous bone are some examples of such materials. In recent years, researchers have shown increased attention to porous materials, especially mesoporous materials where the pores are between 2 and 50 nanometers in diameter. Today such materials are developed for applications including delivery of medicines, moisture adsorption and wastewater cleaning. For many of these applications it is of importance to know how the materials affect biological entities such as different cells and bacteria.

Upsalite® is a mesoporous magnesium carbonate discovered in 2013 by researchers at Uppsala University.

The material has previously been shown to be skin-friendly and to be a promising excipient for formulation of poorly soluble drugs.

In a just published article, in the journal ACS Omega, researchers at Uppsala University show that Upsalite® exerts strong bacteriostatic effect on Staphylococcus epidermidis. This open up new possibilities for Upsalite®, especially in certain dermal applications where an inhibition of bacterial growth is desirable.

"These newly found bacteriostatic properties combined with the ability to load and release molecules, for example fragrances from the pores in the material are highly interesting for many applications," says Maria Strømme, Professor at Department of Engineering Sciences, Nano Technology and Functional Materials one of the authors behind the study.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel antibacterial discovery: Umbrella toxin particles secreted by Streptomyces