Novel deep learning system can predict cardiovascular risk from CT scans

NewsGuard 100/100 Score

Coronary artery calcification -- the buildup of calcified plaque in the walls of the heart's arteries -- is an important predictor of adverse cardiovascular events like heart attacks. Coronary calcium can be detected by computed tomography (CT) scans, but quantifying the amount of plaque requires radiological expertise, time and specialized equipment.

In practice, even though chest CT scans are fairly common, calcium score CTs are not. Investigators from Brigham and Women's Hospital's Artificial Intelligence in Medicine (AIM) Program and the Massachusetts General Hospital's Cardiovascular Imaging Research Center (CIRC) teamed up to develop and evaluate a deep learning system that may help change this.

The system automatically measures coronary artery calcium from CT scans to help physicians and patients make more informed decisions about cardiovascular prevention. The team validated the system using data from more than 20,000 individuals with promising results. Their findings are published in Nature Communications.

"Coronary artery calcium information could be available for almost every patient who gets a chest CT scan, but it isn't quantified simply because it takes too much time to do this for every patient," said corresponding author Hugo Aerts, PhD, director of the Artificial Intelligence in Medicine (AIM) Program at the Brigham and Harvard Medical School. "We've developed an algorithm that can identify high-risk individuals in an automated manner."

Working with colleagues, lead author Roman Zeleznik, MSc, a data scientist in AIM, developed the deep learning system described in the paper to automatically and accurately predict cardiovascular events by scoring coronary calcium. While the tool is currently only for research purposes, Zeleznik and co-authors have made it open source and freely available for anyone to use.

"In theory, the deep learning system does a lot of what a human would do to quantify calcium," said Zeleznik. "Our paper shows that it may be possible to do this in an automated fashion."

The team began by training the deep learning system on data from the Framingham Heart Study (FHS), a long-term asymptomatic community cohort study. Framingham participants received dedicated calcium scoring CT scans, which were manually scored by expert human readers and used to train the deep learning system.

The deep learning system was then applied to three additional study cohorts, which included heavy smokers having lung cancer screening CT (NLST: National Lung Screening Trial), patients with stable chest pain having cardiac CT (PROMISE: the Prospective Multicenter Imaging Study for Evaluation of Chest Pain), and patients with acute chest pain having cardiac CT (ROMICAT-II: the Rule Out Myocardial Infarction using Computer Assisted Tomography trial). All told, the team validated the deep learning system in over 20,000 individuals.

Udo Hoffmann, MD, director of CIRC@MGH who is the principal investigator of CT imaging in the FHS, PROMISE and ROMICAT, emphasized that one of the unique aspects of this study is the inclusion of three National Heart, Lung, and Blood Institute-funded high-quality image and outcome trials that strengthen the generalizability of these results to clinical settings.

The automated calcium scores from the deep learning system highly correlated with the manual calcium scores from human experts. The automated scores also independently predicted who would go on to have a major adverse cardiovascular event like a heart attack.

The coronary artery calcium score plays an important role in current guidelines for who should take a statin to prevent heart attacks.

This is an opportunity for us to get additional value from these chest CTs using AI. The coronary artery calcium score can help patients and physicians make informed, personalized decisions about whether to take a statin. From a clinical perspective, our long-term goal is to implement this deep learning system in electronic health records, to automatically identify the patients at high risk."

Michael Lu, MD, MPH, Co-Author, Director of Artificial Intelligence, MGH's Cardiovascular Imaging Research Center

Source:
Journal reference:

Zeleznik, R., et al. (2021) Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature Communications. doi.org/10.1038/s41467-021-20966-2.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Can synthetic data boost fairness in medical imaging AI?