Study reveals link between changes of neuronal activities and dyskinesia

NewsGuard 100/100 Score

Many people with Parkinson's disease develop abnormal movements called L-DOPA induced dyskinesia, a major side effect of long-term medication. The mechanism underlying this side effect has been unknown. In this study, researchers have revealed relation between changes of neuronal activities and dyskinesia.

Parkinson's disease (PD) is the common age-related neurological disorder affecting 7 - 10 million people worldwide.

It is caused by loss of dopaminergic neurons in the brain region called the substantia nigra, and induces difficulty in execution of movements (akinesia), muscle stiffness (rigidity), walking difficulty, tremorous hand movements (tremor), and non-motor symptoms such as depression and sleep disturbance.

Compensation of reduced dopamine by administration of L-DOPA improves symptoms. However long-term L-DOPA treatment induce abnormal involuntary movements called L-DOPA-induced dyskinesia, and make the control of symptoms difficult.

Dyskinesia is one of the major issues for advanced PD, however causative changes underlying dyskinesia is not well known. Researchers at the National Institute for Physiological Sciences have revealed that change of neuronal activities during dyskinesia. They recently published their findings in Journal of Neuroscience.

The basal ganglia, which are brain regions related to motor control, receive cortical inputs and send processed information to the output nuclei, the substantia nigra pars reticulata (SNr), through three pathways termed the hyperdirect, direct, and indirect pathways (Figure ).

Researchers recorded neuronal activities in the SNr of PD and dyskinesia model mice. They revealed that input from the direct pathway is enhanced, and input from the indirect pathway is depressed in dyskinesia state.

This situation means that signals to release movements are enhanced, while signals to stop movements are suppressed. Thus, unintended movements can be easily released and cannot be easily stopped once they are released, resulting in dyskinesia.

Our findings have revealed mechanism of L-DOPA-induced dyskinesia. Suppressing neurotransmission through the direct pathway and/or restoring neurotransmission through the indirect pathway may improve dyskinesia symptoms, leading to a future therapeutic strategy for L-DOPA-induced dyskinesia.''

Atsushi Nambu, Study Corresponding Author and Professor, National Institute for Physiological Sciences

Source:
Journal reference:

Dwi, I., et al. (2021) Abnormal Cortico-Basal Ganglia Neurotransmission in a Mouse Model of l-DOPA-Induced Dyskinesia. Journal of Neuroscience. doi.org/10.1523/JNEUROSCI.0267-20.2020.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
UniSA researchers seek solutions for chronic pain in Parkinson's disease