Recent innovations in infectious disease diagnostics

NewsGuard 100/100 Score

Throughout the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has been caused by the spread of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), scientists have developed various innovative diagnostic tools, many of which have been extended beyond the boundaries of the conventional clinical microbiological laboratory.

A recent editorial published in the journal Clinical Biochemistry reports the latest innovations in the field of infectious disease diagnostics.

Study: Innovations in Infectious Disease Diagnostics. Image Credit: PaeGAG / Shutterstock.com

Study: Innovations in Infectious Disease Diagnostics. Image Credit: PaeGAG / Shutterstock.com

Novel infectious disease diagnostics

Over the past several years, there have been significant improvements in diagnostic testing capabilities for infectious diseases, such as those due to influenza, SARS-CoV-2, Clostridium difficile, human immunodeficiency virus (HIV), and Group A streptococcus, as well as sexually transmitted infections (STIs) and Lyme disease. 

Several years ago, Hepatitis B surface antibody testing was introduced based on automated chemical analyzers. This approach, which has been applied to other infectious diseases, has been expanded to detect antigens and nucleic acids, in addition to antibodies.  

The utilization of alternative and non-invasive sample types has also been reported, such that the diagnostic samples are not restricted to blood specimens of infected individuals. Recently, saliva and dried blood spots have been used for the diagnosis of SARS-CoV-2 infection, in which saliva can be used for disease diagnosis, while dried blood spots can be used for surveillance purposes.

Several innovative disease diagnostic tools are based on artificial intelligence and machine learning applications. Advancements in existing technologies and the discovery of new technologies have led to point-of-care, over-the-counter testing, and direct-to-consumer testing applications.

Previous research has revealed the importance of understanding test limitations. More specifically, less-than-optimal analytic sensitivity, if properly implemented, could be perfectly “fit for purpose” in regional networks of hospitals and clinics. 

Researchers have also validated a novel analytical method to analyze three proteins simultaneously. This method can accurately distinguish between bacterial and viral infections in ill patients.

Over-the-counter and direct-to-consumer types of novel diagnostic kits have been developed to detect Group A Streptococcus pharyngitis. A recent United States Centers for Disease Control and Prevention (CDC) Lyme testing algorithm has also considerably improved practical considerations for its implementation. 

Challenges

Significant differences in SARS-CoV-2 antibody assays have been reported. Thus, the optimal performance of these assays must be considered when used in the future.

Certain limitations associated with nucleic acid amplification testing have also been described, despite the fact that this assay is considered to be the gold standard for SARS-CoV-2 detection in terms of its specificity and sensitivity. 

The research by Balogun and Slev (2022) provided important insights into issues related to currently available HIV testing. More specifically, these scientists described current challenges related to pre- and post-exposure prophylaxis used for managing HIV infection.

Journal reference:
Dr. Priyom Bose

Written by

Dr. Priyom Bose

Priyom holds a Ph.D. in Plant Biology and Biotechnology from the University of Madras, India. She is an active researcher and an experienced science writer. Priyom has also co-authored several original research articles that have been published in reputed peer-reviewed journals. She is also an avid reader and an amateur photographer.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Bose, Priyom. (2022, October 17). Recent innovations in infectious disease diagnostics. News-Medical. Retrieved on April 29, 2024 from https://www.news-medical.net/news/20221017/Recent-innovations-in-infectious-disease-diagnostics.aspx.

  • MLA

    Bose, Priyom. "Recent innovations in infectious disease diagnostics". News-Medical. 29 April 2024. <https://www.news-medical.net/news/20221017/Recent-innovations-in-infectious-disease-diagnostics.aspx>.

  • Chicago

    Bose, Priyom. "Recent innovations in infectious disease diagnostics". News-Medical. https://www.news-medical.net/news/20221017/Recent-innovations-in-infectious-disease-diagnostics.aspx. (accessed April 29, 2024).

  • Harvard

    Bose, Priyom. 2022. Recent innovations in infectious disease diagnostics. News-Medical, viewed 29 April 2024, https://www.news-medical.net/news/20221017/Recent-innovations-in-infectious-disease-diagnostics.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study suggests lingering coronavirus in tissues may contribute to long COVID symptoms