Study reveals how a subset of lung T regulatory cells protects against deadly pneumococcal disease

NewsGuard 100/100 Score

A new study by University of Liverpool researchers reveals how resistance to bacteremic pneumonia is provided by a unique subset of lung T regulatory cells.

Streptococcus pneumoniae (the pneumococcus) is the leading cause of community acquired pneumonia with a significant proportion of cases developing bloodstream infections. Such cases of bacteremic pneumonia are associated with a high fatality rate ranging from 20% in young adults to approximately 60% in the elderly, despite the broad application of antibiotic treatment and the availability of effective vaccines. The reasons why certain individuals are more susceptible to invasive pneumococcal disease and others more resistant, has been one of the central unanswered questions of pneumococcal research for decades.

The Bacterial Pathogenesis and Immunity Group, led by Professor Aras Kadioglu at the University of Liverpool, has now discovered a subset of white blood cells in mice which confer resistance to bacteraemic pneumonia. These cells have been identified as TNFR2 expressing Tregs, and have been shown to be critical in the maintenance and control of frontline host immune responses when pneumococci infect the lungs. When these special subset of Tregs are functionally impaired or absent, the immune response to infection becomes dysregulated with excessive and uncontrolled inflammation which leads to tissue damage, allowing bacteria to spread through disrupted lung tissue barriers into the bloodstream, causing a severe and deadly condition called sepsis.

The first author of the study published in Cell Reports, Dr Rong Xu said: "Pneumococcal infection remains a major killer globally, despite the successful introduction of pneumococcal vaccine immunisation programmes. Elucidating the mechanisms of how resistance to infection may develop in high-risk groups, offers a great opportunity for us to develop targeted novel therapies."

The study lead, Professor Aras Kadioglu added: "Our findings show that TNFR2 expressing Treg cells are absolutely essential in controlling inflammation in the lungs and preventing the translocation of pneumococci from lung to blood, thereby providing resistance to invasive disease. In susceptible hosts however, these cells are either functionally impaired or absent, which predisposes them to the development of sepsis. This is a significant finding, which opens the door to potential new therapies which may target and modulate these subset of Tregs to prevent and treat severe invasive pneumococcal diseases."

Source:
Journal reference:

Xu, R., et al. (2023) TNFR2+ regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17A-producing γδ T cells in the lung. Cell Reports. doi.org/10.1016/j.celrep.2023.112054.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study: Antibiotic use in moderate COVID-19 linked to clinical deterioration