Lack or excess of CaM kinase II affects heart muscle cell stiffness

NewsGuard 100/100 Score

The enzyme CaM kinase II relaxes the muscle cells

A certain enzyme, the CaM kinase II, keeps the cardiac muscle flexible. By transferring phosphate groups to the giant protein titin, it relaxes the muscle cells. This is reported by researchers led by Prof. Dr. Wolfgang Linke of the Institute of Physiology at the Ruhr Universität in the journal Circulation Research. In failing hearts, which don't pump enough blood around the body, the scientists found an overly active CaM kinase II. "The phosphorylation of titin could be a new starting point for the treatment of heart failure" Prof. Linke speculates.

Titin phosphorylation determines the mechanical tension of the muscle cell

Titin is the largest protein in the human body, and it acts like a spring which tenses or relaxes the muscle cell. The attachment of phosphate groups to specific titin sites - known as phosphorylation - relaxes the cell. It was already known that the calcium/calmodulin-dependent kinase II, CaM kinase II for short, phosphorylates several proteins in heart cells. Whether it also targets the spring protein titin, has now been examined by the researchers in Bochum.

CaM-Kinase II phosphorylates the giant protein titin

For the study, the researchers used heart cells of "normal" mice, mice that have no CaM kinase II, and mice that produce more CaM kinase II than usual. In cells without the enzyme, titin phosphorylation was reduced by more than 50 percent compared to the normal state. In cells with excess enzyme, however, titin phosphorylation was twice as strong as in normal cells. The CaM kinase II is therefore crucial for the attachment of phosphate groups to the giant protein titin. Linke's team identified two regions within the flexible segment of the titin molecule which are phosphorylated by the enzyme, namely the PEVK and N2Bus region. These sites contain several amino acids of the type serine and threonine, which have changed little in the course of evolution.

The work of the CaM kinase II determines cell stiffness

In further analyses, the research team also showed that a lack or an excess of CaM kinase II affected the stiffness of the muscle cells. Cells without the enzyme were stiffer, cells with the enzyme more flexible. If they added CaM kinase II to cells that were not able to produce the enzyme themselves, these relaxed. In failing human hearts, the team found increased activity of CaM kinase II in comparison with healthy hearts, and thus excessive phosphorylation in the PEVK and N2Bus titin regions. "This seems to alter the mechanical properties of the human heart muscle", says Wolfgang Linke.

Source:

Circulation Research

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Integrating social determinants of health to enhance heart failure risk prediction