Child who received first stem cell trachea transplant functioning well two years on

NewsGuard 100/100 Score

The first child stem cell-supported trachea transplant is functioning well two years on, according to an Article published Online First in The Lancet today. The follow-up of the procedure, carried out in 2010 at Great Ormond Street Hospital (GOSH), shows that the new organ has strengthened and does not appear to have induced any signs of rejection. The 13-year-old boy who received the transplant continues to breathe normally, has grown 11 cm in height and has returned to school. He does not require any anti-rejection therapy.

Ciaran Finn-Lynch underwent the transplant in March 2010 at GOSH, when his own trachea was removed and replaced by a donor windpipe laced with Ciaran’s own stem cells so it would not be rejected.

The donated trachea was obtained from a deceased adult in Italy and was stripped of the donor’s cells, down to the inert collagen. Ciaran’s bone marrow stem cells were collected at GOSH, isolated at the Royal Free Hospital (RFH) and returned to GOSH the same day, where they were applied to the implanted trachea inside Ciaran’s body. Biopsies of epithelial tissues – the lining of the organ - were taken from the patient’s removed trachea during surgery and applied as the new graft was implanted in his body, to kick-start the gradual growth of a lining in the transplanted organ.

The graft was injected with additional cytokines – proteins that stimulate cell growth - to support the growth and differentiation of cells within the new trachea. Following the transplant, Ciaran was given further cell growth-inducing compounds known as granulocyte colony-stimulating factors or G-CSF. This is the first attempt to grow stem cells in vivo – within the body rather than in a laboratory - in a child in an operation of this kind.

The Lancet Article calls for more research in a number of areas, to speed up the recovery of structural rigidity within transplanted tracheas and to increase the availability of tracheal scaffolds by boosting the number of organ donors and exploring the use of animal tracheas and synthetic scaffolds.

Martin Birchall, Professor of Laryngology, UCL Ear Institute, and one of the paper’s authors, says:  “Since the treatment plan for Ciaran was devised in an emergency, we used a novel mix of techniques that have proved successful in treating other conditions. To minimise delays, we bypassed the usual process of growing cells in the laboratory over a period of weeks, and instead opted to grow the cells inside the body, in a similar manner to treatments currently being trialled with patients who have had heart attacks. We need more research on stem cells grown deliberately inside the body, rather than grown first in a laboratory over a long time. This research should help to convert one-off successes such as this into more widely available clinical treatments for thousands of children with severe tracheal problems worldwide.”

Ciaran’s transplant team was led by Professor Martin Elliott of Great Ormond Street Hospital, and comprised Professor Paolo Macchiarini, now at the Karolinska Institute in Stockholm, Professor Martin Birchall, Professor of Laryngology, University College London, Dr Mark Lowdell, Royal Free Hospital, and Dr Paolo De Coppi of Great Ormond Street Hospital.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study highlights how age affects nasal cell response to SARS-CoV-2