Scientists uncover vital clue that could steer research into nervous system disorders

NewsGuard 100/100 Score

Scientists at the Queensland Brain Institute have uncovered a vital clue into how the brain is wired, which could eventually steer research into nervous system disorders such as Parkinson's disease and cognitive disorders including autism.

It's long been known that growing nerve fibres, also known as axons, must make connections in the brain for it to function properly.

"During the brain's development, billions of nerve cells send out nerve fibres which have to find the appropriate targets to form the right connections," lead researcher Professor Geoffrey Goodhill explained.

"There's increasing evidence that defects in the genes coding for molecules that control neural wiring are correlated to a number of cognitive disorders, such as autism and Parkinson's disease."

Professor Goodhill said that steering decisions for nerve fibres are made by structures at the tips of axons, known as growth cones, which can detect signals such as gradients of guidance cues in their environment.

There have long been questions about how the growth cones behave if the gradients are shallow, which makes the guidance signals weak.

"Previously it wasn't clear what was happening when the gradient was very shallow because often the axons didn't seem to turn. It wasn't clear what they were doing.

"We have now shown that they are in fact detecting the gradient, it's just they are not responding to that by turning - they are responding by changing their speed of growth," Professor Goodhill said.

He described the discovery of this alternative form of growth cone steering as at the basic science level, but said it might eventually lead to a better understanding of nervous system development, and cognitive disorders such as autism.

"Wiring defects seem to underlie a lot of cognitive disorders and therefore we need to understand what the basic rules are. We need to know how these nerve fibres find their way to the right locations, and this new discovery is helping us do to that," he said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Neurological Narratives: A Journey into Women's Brain Health Research