Blocking PHD2 oxygen sensor can render cancer treatments more effective

NewsGuard 100/100 Score

Researchers in Leuven (VIB/KU Leuven) have confirmed their hypothesis that normalizing blood vessels by blocking oxygen sensor PHD2 would make chemotherapy more effective. They also demonstrated for the first time that this strategy would reduce the harmful side effects of chemotherapy on healthy organs.

Limited success of chemotherapy

The effectiveness of chemotherapy is first and foremost limited by the difficulties of delivering the anticancer drugs to the actual tumor. Tumors are characterized by abnormally shaped blood vessels - they are irregular in shape, have weak textures and easily tear. These leaking blood vessels prevent anticancer drugs from reaching tumor cells while promoting metastasis. Secondly, chemotherapy can have seriously harmful effects on healthy organs, leading even to heart and kidney failure.

Oxygen sensor (PHD2)

Earlier research at Max Mazzone's lab had already shown that reduced activity of the oxygen sensor PHD2 under hypoxic conditions resulted in a more streamlined vasculature. In this new study, and using mouse models, Rodrigo Leite de Oliveira, Sofie Deschoemaker and Max Mazzone prove their earlier hypothesis that streamlining blood flow by inhibiting PHD2 can render cancer treatments more effective. Firstly, the better formed blood vessels ensure that the anticancer drugs are distributed throughout the tumor, thus increasing their impact. They also allow for smaller doses - a significant advantage when administering toxic drugs. The researchers further proved that inhibiting PHD2 results in the production of anti-oxidant enzymes able to neutralize the harmful side effects of chemotherapy.

A first step toward increasing the effectiveness of chemotherapy

The study is promising: chemotherapy combined with specific PHD2 inhibitors would make chemotherapy more effective while reducing the harmful side effects that place such a heavy burden on patients. Unfortunately, there are no specific PHD2 inhibitors available right now, so we have a long way to go before patients will be able to benefit from this discovery.

Source: VIB/KU Leuven

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis