Overexpression of BCL6 results in transformation of neural stem cells into cortical neurons

Published on November 19, 2012 at 7:38 AM · No Comments

This discovery was surprising because BCL6 is in fact a well known oncogene, responsible for various blood cell cancers called lymphomas. However, nothing was known about this gene in brain development. To verify their intriguing observations, the scientists then examined a transgenic mouse model where the BCL6 gene was disrupted. They found that in these mutant mice, the cerebral cortex was significantly smaller and contained less nerve cells. These data thus indicate that BCL6 is actually required during normal brain development for the proper production of cortical neurons. They went on to elucidate the underlying molecular mechanisms and showed that BCL6 acts together with a gene called Sirt1 to repress actors of the Notch pathway that are involved in the self-renewal of neural stem cells. This repression phenomenon is "epigenetic" and drives neural stem cells irreversibly towards differentiation into cortical neurons.
     
This basic work opens many questions and perspectives, not only for developmental and stem cell neurobiology, but also for cancer biology. Firstly, it identifies a key factor for the production of cortical nerve cells, some of the most important cells in our brain that are also frequently affected by neurological and neuropsychiatric diseases. Secondly, it elucidates a novel molecular mechanism of differentiation, with important implications for our general understanding of what controls the differentiation vs. self-renewal of neural stem cells. Finally, it brings together three major players involved in a myriad of normal and pathological processes: BCL6, an oncogene responsible for blood cell cancer; Sirt1, involved in aging, Alzheimer's disease, metabolism and diabetes; and the Notch pathway, crucial for many processes like brain and heart development or oncogenesis. These genes were not previously shown to interact with each other but might well do in any of these contexts, thus opening a new door to a better understanding of the biology and pathology and the potential development of new therapies.

Source: http://ulb.ac.be

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post