mRNA vaccines offer protection against influenza A virus infections in various animal models

Published on November 26, 2012 at 12:43 AM · No Comments

CureVac GmbH, a clinical stage biopharmaceutical company developing a new class of therapies and vaccines based on mRNA, and the German Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Germany, today announced that mRNA vaccines (RNActive) based on the company's RNA technology platform have the potential to provide effective protection against infectious diseases. In vivo data published by CureVac and the Friedrich-Loeffler-Institute online in Nature Biotechnology show that mRNA vaccines induced balanced, long-lived and protective immunity to influenza A virus infections in various animal models. It is also shown that the production of RNActive vaccines is highly flexible. Thus, RNActive vaccines can be rapidly supplied for a variety of virus strains and subtypes identified in response to pandemic scenarios.

"The findings and results from a very fruitful collaboration with our colleagues from the renowned Friedrich-Loeffler-Institute, underscore the medical potential of mRNA beyond cancer immunotherapy and validate the capacity of our RNActive vaccines to prevent infectious diseases," said Ingmar Hoerr, Ph.D., Chief Executive Officer of CureVac. "The synthetic nature of our RNActive vaccines reduces production time dramatically and allows for sequence-matched vaccines that can be produced quickly and reliably in a scalable process. Additionally, our vaccines can be stored at room temperature, thereby avoiding the cold-chain in contrast to all other vaccines on the market and making worldwide distribution of our vaccines logistically and financially attractive."

Lothar Stitz, M.D., Head of Institute of Immunology, FLI, Greifswald, Germany, and one of the corresponding authors of the publication, said, "Our data highlight the potential and advantages of prophylactic mRNA-based vaccines and make immunization against a broad range of pathogens possible. We have a significant need for improved technologies that could be rapidly adapted to match circulating strains and allow efficient, large-scale production if necessary. In particular, we ultimately need a broadly protective vaccine against influenza. Thus, these mRNA vaccines overcome the draw-backs of many other prophylactic vaccination methods including DNA-based approaches that can have insufficient clinical efficacy or safety and may cause residual vector immunogenicity."

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post