Tbx18 gene directs conversion of cardiomyocytes to genuine pacemaker cells

Published on December 18, 2012 at 1:30 AM · No Comments

Cedars-Sinai Heart Institute researchers have reprogrammed ordinary heart cells to become exact replicas of highly specialized pacemaker cells by injecting a single gene (Tbx18)-a major step forward in the decade-long search for a biological therapy to correct erratic and failing heartbeats.

The advance will be published in the Jan 8 issue of Nature Biotechnology and also will be available today on the journal's website.

"Although we and others have created primitive biological pacemakers before, this study is the first to show that a single gene can direct the conversion of heart muscle cells to genuine pacemaker cells. The new cells generated electrical impulses spontaneously and were indistinguishable from native pacemaker cells," said Hee Cheol Cho, PhD., a Heart Institute research scientist.

Pacemaker cells generate electrical activity that spreads to other heart cells in an orderly pattern to create rhythmic muscle contractions. If these cells go awry, the heart pumps erratically at best; patients healthy enough to undergo surgery often look to an electronic pacemaker as the only option for survival.

The heartbeat originates in the sinoatrial node (SAN) of the heart's right upper chamber, where pacemaker cells are clustered. Of the heart's 10 billion cells, fewer than 10,000 are pacemaker cells, often referred to as SAN cells. Once reprogrammed by the Tbx18 gene, the newly created pacemaker cells - "induced SAN cells" or iSAN cells - had all key features of native pacemakers and maintained their SAN-like characteristics even after the effects of the Tbx18 gene had faded.

But the Cedars-Sinai researchers, employing a virus engineered to carry a single gene (Tbx18) that plays a key role in embryonic pacemaker cell development, directly reprogrammed heart muscle cells (cardiomyocytes) to specialized pacemaker cells. The new cells took on the distinctive features and function of native pacemaker cells, both in lab cell reprogramming and in guinea pig studies.

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post