Seven scientists named 2013 recipients of Damon Runyon-Rachleff Innovation Award

Published on January 8, 2013 at 7:52 AM · No Comments

Damon Runyon Cancer Research Foundation awards $3.15 million to 7 innovative young scientists

The Damon Runyon Cancer Research Foundation announced that seven scientists with novel approaches to fighting cancer have been named 2013 recipients of the Damon Runyon-Rachleff Innovation Award. The grant of $450,000 over three years is awarded each year to early career scientists whose projects have the potential to significantly impact the prevention, diagnosis and treatment of cancer.

Funding Daring Research

The Damon Runyon-Rachleff Innovation Award funds cancer research by exceptionally creative thinkers with "high-risk/high-reward" ideas who lack sufficient preliminary data to obtain traditional funding. The awardees are selected through a highly competitive and rigorous process by a scientific committee comprised of leading cancer researchers who are innovators themselves. At the final stage of selection, candidates are screened by an in-person interview with committee members. Only those scientists with a strong vision and passion for curing cancer are selected to receive the prestigious award.

This program is possible through the generous support of Andy and Debbie Rachleff, the Island Outreach Foundation and Nadia's Gift Foundation.

2013 Damon Runyon-Rachleff Innovators:

Michael Z. Lin, MD, PhD
Stanford University, California

Currently available cancer treatments, such as chemotherapeutics, targeted inhibitors or immunotherapies, are not capable of fully eradicating cancers and are limited by toxicities and side effects.

Dr. Lin aims to take a new approach to cancer treatment by engineering a virus that will infect and replicate specifically in cancer cells, triggering their destruction. This strategy aims not to suppress oncogenic signaling, but to use it as a trigger for a smart biological therapy. If he succeeds, progress will be made toward developing a much-needed "magic bullet" against cancer.

Christine Mayr, MD, PhD [Island Outreach Foundation Innovator]
Memorial Sloan-Kettering Cancer Center, New York

Cancer is thought to arise through a series of genetic mutations in the DNA sequence. Depending on the location of these errors and the genes that are affected, these mutations lead to the many different features that characterize cancer cells such as uncontrolled proliferation, escape from cell death and metastasis.

Dr. Mayr proposes the existence of a new type of anomaly that can lead to cancer: non-genetic aberrations induced by modifications of RNAs, which have so far been excluded from large-scale cancer genomics efforts. She has developed a new method to identify this type of aberration in different cancers and will investigate its frequency and functional consequences for tumor growth. Her studies will help to broaden the understanding of cancers and may also help in the design of new therapeutics.

Nicholas E. Navin, PhD [Nadia's Gift Foundation Innovator]
M.D. Anderson Cancer Center, Texas

Tumors evolve from single cells. As they expand to form the tumor mass, the cells diverge and form distinct subpopulations with different genetic mutations. This salient characteristic is called "intratumor heterogeneity" and confounds basic research and clinical diagnostics. The challenge is that standard genomic tools require a large amount of input material and thus are limited to measuring an average signal from a complex population of cells.

Dr. Navin proposes the development of an innovative single-cell sequencing tool that can detect genomic mutations in single cancer cells, allowing heterogeneity in tumors to be delineated. He will apply this technique to study how single breast cancer cells disseminate from the primary tumor into the circulatory system and seed metastatic tumors. In addition, this method will have a myriad of clinical applications, which have prognostic value in predicting invasion, metastasis, survival and response to chemotherapy. Translating these methods into the clinic is likely to have a profound effect on reducing morbidity in breast cancer and other cancer types.

Trudy G. Oliver, PhD
University of Utah Huntsman Cancer Institute, Utah

Many cancers initially respond to therapy. However, cancers often acquire resistance and stop responding to further treatment. Small cell lung cancer (SCLC) is an example of a cancer that is highly sensitive to initial treatment, but quickly acquires a vicious resistance resulting in a five-year patient survival rate of less than 4%. In order to combat drug resistance and improve the quality of life for patients with SCLC, it is important to understand the key genetic changes and cellular pathways that drive resistance.

Dr. Oliver will use the most innovative next-generation sequencing technologies to comprehensively identify critical genetic changes associated with resistance. These findings will be essential for understanding how lung cancer, and potentially other types of cancer, evades chemotherapy. In addition, this work will identify novel pathways that could be targeted to re-establish drug sensitivity and thereby provide new treatment options for patients with drug-resistant disease.

Bradley L. Pentelute, PhD
Massachusetts Institute of Technology, Massachusetts

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post