Spaceflights cause cellular-level damage and may lead to long-term vision problems

Published on December 13, 2013 at 7:49 AM · No Comments

Those who travel to space are rewarded with a beautiful sight - planet Earth. But the effects of space travel on the human sense of sight aren't so beautiful. More than 30 percent of astronauts who returned from two-week space shuttle missions and 60 percent who spent six months aboard the International Space Station were diagnosed with eye problems. Two recent investigations examined mechanisms that may explain eye changes in spaceflight, help find ways to minimize this health risk to astronauts and eventually prevent and treat eye diseases on Earth.

Mice were flown aboard shuttle flights STS-133 in March 2011 and STS-135 in July 2011 as part of the Commercial Biomedical Testing Module-2 (CBTM-2) and CBTM-3 investigations into how space affects muscle and bones. These sets of mice found second life, contributing to other studies through a tissue-sharing program. Two studies used eye tissue from the mice to provide the first direct evidence that spaceflight causes cellular-level damage that has the potential to cause long-term vision problems.

Susana Zanello, Universities Space Research Association scientist at NASA's Johnson Space Center in Houston, examined eye tissue for changes in gene expression in the retina-the sensory tissue at the back of the eye. That study is the subject of a paper, "Spaceflight Effects and Molecular Responses in the Mouse Eye: Preliminary Observations after Shuttle Mission STS-133," recently published in Gravitational and Space Research.

Results from a study of mice from the second flight were detailed by Xiao W. Mao, MD, a researcher in the Division of Radiation Research at Loma Linda University and Medical Center in California, and her colleagues in "Spaceflight Environment Induces Mitochondrial Oxidative Damage in Ocular Tissue," published in Radiation Research.

Both studies implicated oxidative stress in eye damage. Spaceflight exposes astronauts - and mice - to radiation, hypothermia, hypoxia and variations in gravity, all of which may play roles in tissue injury, and, in particular, oxidative stress. Oxidative stress reflects an imbalance between the reactive oxygen that is generated by normal cell metabolism and the cell's ability to handle toxic byproducts from that metabolism.

The imbalance created by oxidative stress produces peroxides and free radicals, which contribute to a number of degenerative conditions, including aging. They also are known to cause damage to DNA, proteins, cell membranes and organelles inside cells. These organelles include mitochondria that convert oxygen and nutrients into energy. Mitochondria are particularly sensitive to oxidative stress and, therefore, to the effects of microgravity and radiation in space. Mitochondria are thought to play an important role in damage to the retina and have been linked to age- and disease-related eye problems.

Mao's study examined mitochondria-associated gene expression in the mouse eye tissue and found significant changes in several genes involved in oxidative stress response. "We measured 84 genes and found nine that are really critical for developing these changes and associated with damage," she said. "These changes were after short-term flight and might be reversible or might deteriorate over time. But the data so far do indicate a risk to astronauts from oxidative changes."

Read in | English | Español | Français | Deutsch | Português | Italiano | 日本語 | 한국어 | 简体中文 | 繁體中文 | Nederlands | Русский | Svenska | Polski
Comments
The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post