Genetically modified E. coli has ability to produce D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia coli to increase the bacteria's ability to produce D-ribose is a critical step toward achieving more efficient industrial-scale production of this valuable chemical, as described in an article in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Industrial Biotechnology website.

In "Engineering Escherichia coli for D-Ribose Production from Glucose-Xylose Mixtures." Pratish Gawand and Radhakrishnan Mahadevan, University of Toronto, Canada, describe the metabolic engineering strategy they used to increase the yield of D-ribose from the genetically modified E. coli, which were able to produce D-ribose from mixtures of glucose and xylose. The authors propose future research directions for additional metabolic engineering and bioprocess optimization.

"The research article by Gawand and Mahadevan represents one of many ways that molecular biology is being deployed to expand Industrial Biotechnology development," says Co-Editor-in-Chief Larry Walker, PhD, Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY.

Advertisement

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Detailed analysis of bacterial proteins offers path for new drugs to curb tuberculosis