Scientists find interplay between two specific proteins crucial for flawless repair of crosslink damage

NewsGuard 100/100 Score

Environmental influences such as ionizing radiation, intense heat or various chemical substances damage the DNA constantly. Only thanks to efficient repair systems can mutations - changes in the DNA - largely be prevented. DNA crosslinks that covalently link both strands of the DNA double helix are among the most dangerous DNA lesions. Crosslinks block DNA replication and can thus cause cell death. Moreover, their faulty repair can trigger the development of tumors. Crosslink repair is highly complex and only vaguely understood today. A team of cancer researchers headed by Alessandro Sartori from the University of Zurich now reveals interesting details as to how cells recognize crosslink damage. In their study recently published in Cell Reports, the scientists demonstrate that the interplay between two specific proteins is crucial for the flawless repair of crosslink damage.

Repair protein recognizes crosslink damage with the aid of a signal protein

For their study, the researchers examined the Fanconi anemia signal pathway, which coordinates the complex repair of crosslinks, with the aid of genetically modified and unchanged cells. Sartori and his team wanted to find out whether and how the signal pathway and the repair protein CtIP interact with one another. "We are able to show that CtIP recognizes and repairs crosslinks efficiently with the aid of the Fanconi anemia signal pathway, or FANCD2 to be more precise," explains Sartori. The scientists also discovered the point where CtIP attaches itself to the FANCD2 protein. According to the researchers, the interplay between the two proteins is necessary for the flawless and smooth repair of crosslink damage as it prevents the relocation of entire chromosome sections to another position (see figure). Referred to as chromosomal translocation, the process is one of the main causes of the development of cancer.

These days, substances that specifically trigger crosslink damage are used in cancer chemotherapy. The new findings are therefore important for both our understanding of the development of cancer and the further development of improved drugs.

Fanconi anemia

Fanconi anemia (FA) is a rare congenital disorder that was first described in 1927 by Guido Fanconi (1892­-1979), Professor of Pediatrics at the University of Zurich. Fanconi anemia is triggered by mutations in genes that regulate the repair of DNA crosslinks. Patients who suffer from Fanconi anemia display bone marrow failure already during childhood and have a risk of developing cancer that is about 1,000 times higher compared to healthy individuals. Only around a third of Fanconi anemia patients live beyond the age of 30.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Link between aldehydes and premature aging revealed