Controlling neural excitations may help prevent detrimental effects like those in stroke, say scientists

NewsGuard 100/100 Score

A theoretical study of short- and long-range effects on neural excitation pulses might one day lead to controlling harmful signals such as those in strokes

What do lasers, neural networks, and spreading epidemics have in common? They share a most basic feature whereby an initial pulse can propagate through a medium - be it physical, biological or socio-economic, respectively. The challenge is to gain a better understanding - and eventually control - of such systems, allowing them to be applied, for instance to real neural systems. This is the objective of a new theoretical study published in EPJ B by Clemens Bachmair and Eckehard Schöll from the Berlin University of Technology in Germany. Ultimately, with a better theoretical understanding, scientists aim to control such excitations in networks of neurons to prevent their detrimental effects like in stroke.

Scientists have long sought to find a means of controlling the excitation pulses in what are referred to as excitable media - either to suppress or to accelerate them. Or even to generate completely new spatio-temporal patterns that alter the impact of the pulses on their surroundings.

This time, the German team has performed the first systematic theoretical analysis of the influence of a specific kind of spatial interaction on the propagation of excitation pulses. Specifically, they focused on a kind of interaction that is attractive for small distances and repulsive for large distances. This characteristic mirrors interacting neurons in the cortex. Indeed, they combined excitatory coupling of neighbouring cells with long-range interactions of distant cells inhibiting the electric pulse propagation, previously demonstrated by neuroscientists.

In this study, the authors found, for the first time, that such non-local couplings can produce a rich variety of spatio-temporal patterns. These include acceleration, deceleration, and suppression of propagating pulses, and multiple pulses and blinking traveling waves. They also showed that the response all depends on the type of parameters in the short- and long-range coupling.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Deep learning shines a new light on Parkinson's detection through the eye