Researchers identify gene variant that makes breast cancer cells more aggressive

NewsGuard 100/100 Score

A particular human gene variant makes breast cancer cells more aggressive. Not only are these more resistant to chemotherapy but also leave the primary tumour and establish themselves in other parts of the body in the form of metastases. An international group of researchers led by Lukas Kenner of MedUni Vienna has now identified a gene, AF1q, as being substantially responsible for this and recognized it as a possible starting point for more accurate diagnosis and potential targeted therapeutic approaches.

The human AF1q gene was originally discovered in a chromosomal abnormality and recognised as an important factor in the development of leukaemia. Elevated AF1q levels were also found in particularly aggressive forms of acute myeloid leukaemia (AML).

The exact function of AF1q in the body is not yet fully understood but the study shows that AF1q is an important key protein in the TCF7/Wnt signaling pathway and controls the behaviour of cancer cells. Increased AF1q expression promotes the development and growth of tumour cells and prevents from natural cellular death. Patients suffering from breast cancer who have pronounced AF1q expression have a much poorer prognosis than those who do not. Furthermore, "AF1q-positive" cancer cells are more resistant to forms of chemotherapy.

Tumour cells migrate and form metastases

It was further demonstrated in model experiments that increased expression of AF1q in breast cancer cells encourages metastasis in the liver and also in the lung. When the research group compared samples of primary tumour with samples of metastases, they found that AF1q-positive cancer cells had left the primary tumour and established themselves in other areas of the body as metastases. "There is a lot of evidence to suggest that cancer cells with hyperactive AF1q expression act like founding cells for metastases," explains Lukas Kenner, "they are able to migrate into other parts of the body, establish themselves there and spread."

Since the increased presence of AF1q indicates a poorer prognosis, this knowledge can be used to improve diagnosis in the future. However, AF1q can also be used as a starting point for targeted treatment. For example, it might be possible to reduce the formation of metastases in the future or even prevent it altogether.

Lukas Kenner heads up the Department of Laboratory Animal Pathology at the Clinical Institute of Pathology at MedUni Vienna and VetmedUni Vienna and is Deputy Director of the Ludwig Boltzmann Institute for Cancer Research.

Five research clusters at MedUni Vienna

In total, five research clusters have been established at MedUni Vienna. In these clusters, MedUni Vienna is increasingly focusing on fundamental and clinical research. The research clusters include medical imaging, cancer research/oncology, cardiovascular medicine, medical neurosciences and immunology. In terms of content, this work falls within the subject area of the cancer research/oncology cluster.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New cancer projections show increased prostate cases by 25% in 2050, despite prevention efforts