Absence of PEMT enzyme leads to development of fatty liver disease and tumours in thin patients

NewsGuard 100/100 Score

Researchers observe protection against obesity and insulin resistance but at the cost of prominent fatty liver disease in mice lacking the PEMT enzyme and patients with low levels of PEMT.

Non-alcoholic fatty liver disease – steatohepatitis - is an increasingly common chronic form of hepatitis. As Jun Wada and colleagues at Okayama University Graduate School of Medicine, Shigei Medical Research Institute and Dainippon Sumitomo Pharma explain in a recent report, “Although obesity is undoubtedly one of the main risk factors for the development of non-alcoholic fatty liver disease, many clinical observations demonstrated the presence of lean NAFLD patients with normal body mass index (BMI).” The team’s latest work shows that absence of the enzyme phosphatidylethanolamine N-methyltransferase (PEMT), while protecting from diet-induced obesity and diabetes, leads to the prominent development of fatty liver disease and tumours in response to a high-fat high-sucrose diet.

PEMT catalyses methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in liver cells using S-adenosyl methionine as a methyl donor. The ratio of PE to PC is known to be crucial to cell membrane integrity and resistance to endoplasmic reticulum stress and the infiltration of the liver with fat.

Wada and colleagues fed mice lacking the PEMT enzyme a high-fat high-sucrose diet for up to 90 weeks. They monitored the fat accumulation and insulin resistance before dissecting them to examine their livers. The researchers noted enhanced apoptosis and cell proliferation in the liver, which they explain through transactivation of the protein p53, which is inhibited in the presence of PEMT. The researchers also note a similarity in the response of the PEMT knock-out mice to that of lean human patients suffering from non-alcoholic steatohepatitis.

The researchers then performed genome-wide sequencing-based DNA methylation analysis. Further investigation revealed that PEMT mRNA expression in liver tissues of human non-alcoholic steatohepatitis patients was significantly lower than for simple steatosis, and as they add “lower quartiles of PEMT mRNA demonstrated lower BMI and platelet counts, suggesting lower expression of PEMT is critically linked to the pathogenesis of lean non-alcoholic steatohepatitis.”

Background

Non-alcoholic fatty liver disease (NAFLD)

Extensive build-up of fat in the liver is responsible for a range of diseases including simple steatosis and non-alcoholic steatohepatitis (NASH). The increased instances of NAFLD are linked with the rise in obesity and diabetes, which are now considered to have reached epidemic proportions. However, NASH has also been reported in patients with a normal body mass index (BMI), and the prevalence of “lean NAFLD” was recently reported at 12% in Greece, 20% in India and 15% in China.

Choline deficiency and lean NAFLD

Mice fed a methionine- and choline-deficient diet (MCD) are a widely used mouse models for NASH research. An absence of obesity and insulin resistance has been observed in both MCD mice and PEMT knockout mice fed high-fat high-sucrose diets.

PC is synthesized from choline, and a balance in PE and PC levels is thought to be important for maintaining cell membrane integrity, stabilising lipid droplets and the normal distribution of fat. Disrupting this balance appears to cause accumulation of fat in the liver.

PEMT catalyses methylation of PE, which also produces PC. The similar effects – lack of obesity and prominent steatohepatitis – is also observed in PEMT knock-out mice and human NAFLD patients with low levels of PEMT.

DNA methylation analysis

The genome-wide sequencing-based DNA methylation analysis by the researchers revealed enhanced methylation of two genes associated with cyclin D1 degradation and negative regulation. These results implicate the upregulation of cyclin D1 in the development of liver disease and tumours in PEMT knock-out mice.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Patients with non-alcoholic fatty liver disease may benefit from increased dietary niacin intake