Scientists discover Hobit, Blimp1 genes that fight disease-causing pathogens

NewsGuard 100/100 Score

Melbourne researchers have uncovered the genes responsible for the way the body fights infection at the point of 'invasion' - whether it's the skin, liver, lungs or the gut.

Research led by Dr Axel Kallies and Dr Klaas van Gisbergen at the Walter and Eliza Hall Institute of Medical Research, and Dr Laura Mackay from the University of Melbourne at the Peter Doherty Institute for Infection and Immunity has identified the genes Hobit and Blimp1 and found that these genes control a universal molecular program responsible for placing immune cells at the 'front lines' of the body to fight infection and cancer.

The presence of these organ-residing cells, which differ strikingly from their counterparts circulating in the blood stream, is key to local protection against viruses and bacteria.

Walter and Eliza Hall Institute's Dr Kallies said the human body was fighting disease-causing pathogens every minute of its life.

Dr Kallies said identifying how immune cells remain in the part of the body where they are needed most was critical to developing better ways to protect us from infections such as malaria or HIV.

"Discovering these 'local heroes' and knowing how the localised immune response is established allows us to find ways to ensure the required cells are positioned where they are needed most," Dr Kallies said.

"This research will help us understand how immune cells adapt, survive and respond within the organs they protect. This is critical to rid the body of pathogens even before they are established and may also have implications for understanding how the spread of cancer could be prevented."

The Doherty Institute's Dr Laura Mackay, who is also an associate investigator with the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, said the factors that control the 'tissue-residency' of immune cells - their ability to locally reside in different organs of the body - was previously unknown.

"These results have major implications for developing strategies to induce immune cells in tissues that protect against infectious diseases," Dr Mackay said.

"It's a crucial discovery for future vaccine strategies - Hobit and Blimp1 would be key to placing immune cells in the tissues, which we know are really important for protection."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
DASH diet may lower the risk of cardiovascular disease in breast cancer survivors