Profiling gamma-retrovirus integration sites may help identify genes linked to specific cancer types

NewsGuard 100/100 Score

Identifying the sites where gamma-retroviruses commonly insert into the genome may help to identify genes associated with specific cancer types, according to a study published April 20, 2016 in the open-access journal PLOS ONE by Kathryn Gilroy at the University of Glasgow, UK, and colleagues.

Gamma-retroviruses, such as feline leukaemia virus, tend to cause mutations when they insert into a host's genome, and have been used as a tool to discover genes associated with cancer. However, this discovery process can be time consuming, requiring the collection of multiple tumors from animals and comparative genomic analyses. The authors of the present study sought to investigate the pattern of gamma-retrovirus insertion using deep sequencing to analyse common insertion sites for feline leukaemia virus in cell culture. The study was also expanded to analyze published genome insertion profiles of other gamma-retroviruses.

The authors found that the gamma-retroviruses preferentially inserted into cancer-driving genes, regardless of transcription levels, in a cell type-specific manner. This authors suggest that gamma-retrovirus integration profiling in vitro may be a tool to identify potential therapeutic target genes in different human cancer types.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough imaging method enhances precision in prostate cancer treatment